Home
Class 12
MATHS
if x sqrt"" (1+y) + y sqrt"" (1+x) =...

if ` x sqrt"" (1+y) + y sqrt"" (1+x) =0 `, then
dy /dx =

A

` 1//(1 +x)^2`

B

`-1 // (1 +x)^2`

C

` 1 // (1+x)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ x \sqrt{1+y} + y \sqrt{1+x} = 0 \] We need to find \(\frac{dy}{dx}\). ### Step 1: Differentiate both sides with respect to \(x\) Using implicit differentiation, we differentiate both sides of the equation: \[ \frac{d}{dx}(x \sqrt{1+y}) + \frac{d}{dx}(y \sqrt{1+x}) = 0 \] ### Step 2: Apply the product rule For the first term \(x \sqrt{1+y}\), we apply the product rule: \[ \frac{d}{dx}(x \sqrt{1+y}) = \sqrt{1+y} + x \cdot \frac{1}{2\sqrt{1+y}} \cdot \frac{dy}{dx} \] For the second term \(y \sqrt{1+x}\), we also apply the product rule: \[ \frac{d}{dx}(y \sqrt{1+x}) = \frac{dy}{dx} \sqrt{1+x} + y \cdot \frac{1}{2\sqrt{1+x}} \] ### Step 3: Substitute the derivatives back into the equation Putting it all together, we have: \[ \sqrt{1+y} + x \cdot \frac{1}{2\sqrt{1+y}} \cdot \frac{dy}{dx} + \frac{dy}{dx} \sqrt{1+x} + y \cdot \frac{1}{2\sqrt{1+x}} = 0 \] ### Step 4: Rearranging the equation Now, we can rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \left( x \cdot \frac{1}{2\sqrt{1+y}} + \sqrt{1+x} \right) \frac{dy}{dx} = -\left( \sqrt{1+y} + y \cdot \frac{1}{2\sqrt{1+x}} \right) \] ### Step 5: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{\sqrt{1+y} + y \cdot \frac{1}{2\sqrt{1+x}}}{x \cdot \frac{1}{2\sqrt{1+y}} + \sqrt{1+x}} \] ### Step 6: Simplifying the expression This expression can be simplified further, but we can leave it in this form for now. ### Final Answer Thus, we have: \[ \frac{dy}{dx} = -\frac{\sqrt{1+y} + \frac{y}{2\sqrt{1+x}}}{\frac{x}{2\sqrt{1+y}} + \sqrt{1+x}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x+sqrt( xy)+ y=1 ,then (dy)/(dx)=

If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =

If x sqrt(y+1)+y sqrt(x+1)=0 & x!=y, then (dy)/(dx)=

If y= (sqrt( x) +(1)/(sqrt(x)) ) ^(5) , then (dy)/(dx) =

If y = sqrt((1 + x)/(1 -x)) " then " (dy)/(dx) = ?

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If y=sqrt(1+x^(2)) then (dy)/(dx) =

If x sqrt(1+y)+y sqrt(1+x)=0 and x!=y ,then (1+x)^(2)(dy)/(dx)+(3)/(2)=