Home
Class 12
MATHS
If sin y=x sin (a +y) , then (dy)/(dx...

If sin `y=x sin (a +y) `, then ` (dy)/(dx)=`

A

`( sin^2 ( a +y))/(sin a)`

B

` sin (a +y)`

C

`sin^2 (a+y)`

D

` (sin (a+ y))/( sin a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin y = x \sin(a + y) \) and find \( \frac{dy}{dx} \), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate both sides with respect to \( x \) Starting with the equation: \[ \sin y = x \sin(a + y) \] We differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\sin y) = \frac{d}{dx}(x \sin(a + y)) \] ### Step 2: Apply the chain rule on the left side Using the chain rule on the left side: \[ \cos y \frac{dy}{dx} = \frac{d}{dx}(x \sin(a + y)) \] ### Step 3: Differentiate the right side using the product rule For the right side, we apply the product rule: \[ \frac{d}{dx}(x \sin(a + y)) = \sin(a + y) + x \cos(a + y) \frac{dy}{dx} \] ### Step 4: Set the derivatives equal Now we have: \[ \cos y \frac{dy}{dx} = \sin(a + y) + x \cos(a + y) \frac{dy}{dx} \] ### Step 5: Rearrange the equation to isolate \( \frac{dy}{dx} \) Rearranging gives: \[ \cos y \frac{dy}{dx} - x \cos(a + y) \frac{dy}{dx} = \sin(a + y) \] Factoring out \( \frac{dy}{dx} \): \[ \left( \cos y - x \cos(a + y) \right) \frac{dy}{dx} = \sin(a + y) \] ### Step 6: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\sin(a + y)}{\cos y - x \cos(a + y)} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\sin(a + y)}{\cos y - x \cos(a + y)} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If sin y=x sin(a+y), then show that: (dy)/(dx)=(sin a)/(1-2x cos a+x^(2))

If sin y = x sin (a + y) prove that (dy) / (dx) = (sin a) / (1-2x cos a + x ^ (2))

If x = (y)/(sin y) , then (dy)/(dx)

If y = sqrt(sin x + y), then (dy)/(dx)=

If y^y=x sin y , then (dy)/(dx) =

If (x +y) = sin (x + y) " then " (dy)?(dx)= ?

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If y=[sin x]^(y) then (dy)/(dx)