Home
Class 12
MATHS
If sin y=x cos ( a + y) , then (dy)...

If ` sin y=x cos ( a + y) ,` then ` (dy)/(dx) =`

A

`(sin^2 (a+y))/(sin a)`

B

`( cos a)/( cos^2 (a +y))`

C

`(cos^2 (a+y))/(cos a)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin y = x \cos(a + y) \) and find \( \frac{dy}{dx} \), we will use implicit differentiation. ### Step-by-Step Solution: 1. **Differentiate both sides with respect to \( x \)**: \[ \frac{d}{dx}(\sin y) = \frac{d}{dx}(x \cos(a + y)) \] 2. **Apply the chain rule on the left side**: \[ \cos y \frac{dy}{dx} = \frac{d}{dx}(x \cos(a + y)) \] 3. **Use the product rule on the right side**: \[ \cos y \frac{dy}{dx} = \cos(a + y) + x \frac{d}{dx}(\cos(a + y)) \] 4. **Differentiate \( \cos(a + y) \) using the chain rule**: \[ \frac{d}{dx}(\cos(a + y)) = -\sin(a + y) \frac{dy}{dx} \] Thus, we can rewrite the equation as: \[ \cos y \frac{dy}{dx} = \cos(a + y) - x \sin(a + y) \frac{dy}{dx} \] 5. **Rearranging the equation**: \[ \cos y \frac{dy}{dx} + x \sin(a + y) \frac{dy}{dx} = \cos(a + y) \] Factor out \( \frac{dy}{dx} \): \[ \left(\cos y + x \sin(a + y)\right) \frac{dy}{dx} = \cos(a + y) \] 6. **Solve for \( \frac{dy}{dx} \)**: \[ \frac{dy}{dx} = \frac{\cos(a + y)}{\cos y + x \sin(a + y)} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{\cos(a + y)}{\cos y + x \sin(a + y)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y= sin (cos (tan x)) ,then (dy)/(dx) =

If y^y=x sin y , then (dy)/(dx) =

If sin y = x sin (a + y) prove that (dy) / (dx) = (sin a) / (1-2x cos a + x ^ (2))

If sin y=x sin(a+y), then show that: (dy)/(dx)=(sin a)/(1-2x cos a+x^(2))

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If y=cos (sin x ),then (dy)/(dx) =

If sin (x+y) +cos (x+y) =1,then (dy)/(dx)=

If sin(x+y)=y cos(x+y) ,then prove that (dy)/(dx)=-(1+y^(2))/(y^(2))

If y= (sinx -cos x )^((sin x +cos x ) ),then (dy)/(dx)=