Home
Class 12
MATHS
if sin y = x sin ( alpha + y) and...

if ` sin y = x sin ( alpha + y) and (dy)/(dx) = (a)/(x^2 + 2xb+1)` then

A

`a=b`

B

` a-b=1`

C

` a+b=1`

D

` a^2 +b^2 =1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation and differentiate it with respect to \( x \). ### Step 1: Start with the given equation The equation provided is: \[ \sin y = x \sin(\alpha + y) \] ### Step 2: Apply the sine addition formula Using the sine addition formula, we can expand the right-hand side: \[ \sin(\alpha + y) = \sin \alpha \cos y + \cos \alpha \sin y \] Substituting this back into the equation gives: \[ \sin y = x (\sin \alpha \cos y + \cos \alpha \sin y) \] ### Step 3: Rearranging the equation Rearranging the equation to isolate terms involving \( y \): \[ \sin y - x \cos \alpha \sin y = x \sin \alpha \cos y \] Factoring out \( \sin y \) on the left: \[ \sin y (1 - x \cos \alpha) = x \sin \alpha \cos y \] ### Step 4: Divide by \( \cos y \) To express \( \tan y \): \[ \tan y = \frac{x \sin \alpha}{1 - x \cos \alpha} \] ### Step 5: Find \( y \) Taking the inverse tangent: \[ y = \tan^{-1}\left(\frac{x \sin \alpha}{1 - x \cos \alpha}\right) \] ### Step 6: Differentiate \( y \) with respect to \( x \) Using the chain rule and the derivative of \( \tan^{-1}(u) \): \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{x \sin \alpha}{1 - x \cos \alpha}\right)^2} \cdot \frac{d}{dx}\left(\frac{x \sin \alpha}{1 - x \cos \alpha}\right) \] ### Step 7: Differentiate the fraction Using the quotient rule: Let \( u = x \sin \alpha \) and \( v = 1 - x \cos \alpha \): \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} = \sin \alpha \) and \( \frac{dv}{dx} = -\cos \alpha \): \[ \frac{d}{dx}\left(\frac{x \sin \alpha}{1 - x \cos \alpha}\right) = \frac{(1 - x \cos \alpha)(\sin \alpha) - (x \sin \alpha)(-\cos \alpha)}{(1 - x \cos \alpha)^2} \] ### Step 8: Substitute back into the derivative Substituting this back into the expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{(1 - x \cos \alpha)^2}{(1 + \left(\frac{x \sin \alpha}{1 - x \cos \alpha}\right)^2)} \cdot \left[\sin \alpha (1 - x \cos \alpha) + x \sin \alpha \cos \alpha\right] \] ### Step 9: Simplify the expression After simplification, we find: \[ \frac{dy}{dx} = \frac{a}{x^2 + 2xb + 1} \] where \( a = \sin \alpha \) and \( b = -\cos \alpha \). ### Conclusion Thus, we have: \[ a = \sin \alpha, \quad b = -\cos \alpha \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If sin y = x sin (a + y) prove that (dy) / (dx) = (sin a) / (1-2x cos a + x ^ (2))

sin x(dy)/(dx)+y=y^(2)

If x^(3) + y^(2) = sin (x + y) , find (dy)/(dx)

If x ^(2) + y ^(2) = sin ( x + y), then (dy)/(dx) =

If sin y=x sin(y+a) and (dy)/(dx)=(A)/(1+x^(2)-2x cos a) then the value of A is

If sin y=x sin(y+a) and (dy)/(dx)=(A)/(1+x^(2)-2x cos a) ,then the value of A if x=0 and y=0 is (A) 2 (B) cos a (C) sin a (D) sin2a

If y= sin (x^(2) +5) , then (dy)/(dx) =

If y =sin (x^(2) +x) ,then (dy)/(dx) =

If y = x^(2) " sin " (1)/(x) " then " (dy)/(dx) = ?