Home
Class 12
MATHS
If y= sqrt"" ( sin x+ y) , then dy /...

If `y= sqrt"" ( sin x+ y) , then
dy //dx =`

A

`sin x // ( 2y -1)`

B

` sin x // (1 -2y)`

C

` cos x// (1-2y)`

D

` cos x// (2y-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y = \sqrt{\sin x + y} \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Square both sides We start with the equation: \[ y = \sqrt{\sin x + y} \] To eliminate the square root, we square both sides: \[ y^2 = \sin x + y \] ### Step 2: Rearrange the equation Next, we rearrange the equation to isolate all terms on one side: \[ y^2 - y - \sin x = 0 \] ### Step 3: Differentiate both sides with respect to \( x \) Now, we differentiate both sides of the equation with respect to \( x \). We will use implicit differentiation: \[ \frac{d}{dx}(y^2) - \frac{d}{dx}(y) - \frac{d}{dx}(\sin x) = 0 \] Using the chain rule, we get: \[ 2y \frac{dy}{dx} - \frac{dy}{dx} - \cos x = 0 \] ### Step 4: Factor out \( \frac{dy}{dx} \) Now, we can factor out \( \frac{dy}{dx} \): \[ (2y - 1) \frac{dy}{dx} - \cos x = 0 \] ### Step 5: Solve for \( \frac{dy}{dx} \) Rearranging the equation gives us: \[ (2y - 1) \frac{dy}{dx} = \cos x \] Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\cos x}{2y - 1} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\cos x}{2y - 1} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(sin x+y), then find(dy)/(dx)

If y = sqrt(x sin x) " then "(dy)/(dx) = ?

Knowledge Check

  • If y= sin sqrt ( sin sqrt x) ,then (dy)/( dx) =

    A
    ` (cos sqrtx cos sqrt sin sqrt x )/( 2sqrt x sin sqrt x )`
    B
    ` (cos sqrtx cos sqrt sin sqrt x )/( 2sqrt sin sqrt x )`
    C
    ` (cos sqrtx cos sqrt sin sqrt x )/( 4sqrt x sin sqrt x )`
    D
    ` (cos sqrtx cos sqrt sin sqrt x )/( 4sqrt sin sqrt x )`
  • If y= (a^(sqrt x) ) ^(sin x) ,then (dy)/(dx) =

    A
    ` a^(sqrt( x ) sin x ) (log a ) (sqrt xcos x -(sin x)/(sqrt(x)) ) `
    B
    ` a^(sqrt( x ) sin x ) (log a ) (sqrt xcos x + (sin x)/(sqrt(x)) ) `
    C
    ` a^(sqrt( x ) sin x ) (log a ) (sqrt xcos x + (sin x)/(2sqrt(x)) ) `
    D
    ` a^(sqrt( x ) sin x ) (log a ) (sqrt xcos x - (sin x)/(2sqrt(x)) ) `
  • If y= sqrt (sin x +sqrt cos x ), then (dy)/(dx) =

    A
    ` (2cos x sqrt (cos x )-sin x )/( 4sqrt (cosx sqrt sin x +sqrtcos x ))`
    B
    ` (2cos x sqrt (cos x )+ sin x )/( 4sqrt (cosx sqrt sin x +sqrtcos x ))`
    C
    ` (2cos x sqrt (cos x )- sin x )/( 2sqrt (cosx sqrt sin x +sqrtcos x ))`
    D
    ` (2cos x sqrt (cos x )+ sin x )/( 2sqrt (cosx sqrt sin x +sqrtcos x ))`
  • Similar Questions

    Explore conceptually related problems

    If y^y=x sin y , then (dy)/(dx) =

    If y =sqrt (tan sqrt x ), then (dy)/(dx) =

    If y =sqrt sin sqrtx ,then (dy)/(dx) =

    If y= sqrt ((1+sin x) /( 1-sin x) ,)then (dy)/(dx) =

    If y = sqrt(sin + y ) "then" (dy)/(dx) is equal to