Home
Class 12
MATHS
If x^y = e^(x-y) then (dy)/(dx)=...

If ` x^y = e^(x-y)` then ` (dy)/(dx)`=

A

`(log x )/( (1 + log x)^2)`

B

`(x-y)/( (1 + log x)^2)`

C

`(x+y)/((1 + log x)^2)`

D

` (1)/( 1+ log x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^y = e^{(x - y)} \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \ln(x^y) = \ln(e^{(x - y)}) \] ### Step 2: Simplify using logarithmic properties Using the properties of logarithms, we can simplify both sides: \[ y \ln(x) = x - y \] ### Step 3: Rearranging the equation Rearranging the equation gives us: \[ y \ln(x) + y = x \] This can be factored as: \[ y (\ln(x) + 1) = x \] ### Step 4: Solve for \( y \) Now, we can express \( y \) in terms of \( x \): \[ y = \frac{x}{\ln(x) + 1} \] ### Step 5: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \): Using the quotient rule: \[ \frac{dy}{dx} = \frac{(\ln(x) + 1)(1) - x \cdot \frac{1}{x} \cdot 1}{(\ln(x) + 1)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\ln(x) + 1 - 1}{(\ln(x) + 1)^2} \] ### Step 6: Final simplification Thus, we have: \[ \frac{dy}{dx} = \frac{\ln(x)}{(\ln(x) + 1)^2} \] ### Final Answer The final answer is: \[ \frac{dy}{dx} = \frac{\ln(x)}{(1 + \ln(x))^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x^(2y)=e^(x-y)," then "(dy)/(dx)=

If x^(y) = e^(2(x-y)), "then" (dy)/(dx) is equal to

If x^(y)=e^(x-y), then find (dy)/(dx)atx=1

If y=e^(x)+x then (dy)/(dx)=

If e^(x+y) =cos (x-y) ,then (dy)/(dx)=

If y=e^(x)x^(2) then (dy)/(dx)=

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))