Home
Class 12
MATHS
If y = log |x| , then (dy)/(dx) =...

If ` y = log |x| , then (dy)/(dx)` =

A

`1/x`

B

`-1/x`

C

`(1)/(|x|)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log |x| \), we will consider two cases based on the definition of the absolute value function. ### Step-by-step Solution: 1. **Understanding the Function**: The function \( y = \log |x| \) can be expressed in two cases based on the value of \( x \): - Case 1: When \( x > 0 \), \( |x| = x \) and hence \( y = \log x \). - Case 2: When \( x < 0 \), \( |x| = -x \) and hence \( y = \log (-x) \). 2. **Differentiating Case 1**: For \( x > 0 \): \[ y = \log x \] The derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{x} \] 3. **Differentiating Case 2**: For \( x < 0 \): \[ y = \log (-x) \] To differentiate this, we apply the chain rule. The derivative of \( \log u \) where \( u = -x \) is: \[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} = \frac{1}{-x} \cdot (-1) = \frac{1}{-x} \cdot (-1) = \frac{1}{x} \] 4. **Combining Results**: From both cases, we can conclude that: \[ \frac{dy}{dx} = \frac{1}{x} \quad \text{for } x \neq 0 \] ### Final Answer: Thus, the derivative of \( y = \log |x| \) is: \[ \frac{dy}{dx} = \frac{1}{x} \quad \text{for } x \neq 0 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y = e^(log x ) , then ( dy)/(dx)

If y =log x^(x) ,then (dy)/(dx) =

If y = x^(log x) , then (dy)/(dx) equals

If y = log_(10) x " then "(dy)/(dx) = ?

If y =log (log x) then (dy)/(dx) =

If y=log x^(x), then (dy)/(dx)=

If y=5^(log x) then (dy)/(dx)=