Home
Class 12
MATHS
If f(x) =| log x|, then...

If f(x) =| log x|, then `

A

`y' (1+) =(1)/(x)`

B

`y'(1-) =-(1)/(x)`

C

`y'(1)=1`

D

`y'(0) =oo`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = |\log x| \), we need to analyze the function based on the properties of the logarithm and the absolute value. ### Step-by-Step Solution: 1. **Identify the function**: The function is given as \( f(x) = |\log x| \). 2. **Determine the behavior of \( \log x \)**: - For \( x > 1 \): \( \log x > 0 \) so \( |\log x| = \log x \). - For \( 0 < x < 1 \): \( \log x < 0 \) so \( |\log x| = -\log x \). - At \( x = 1 \): \( \log 1 = 0 \) so \( f(1) = 0 \). 3. **Find the right-hand derivative (RHD) at \( x = 1 \)**: \[ f'(1^+) = \lim_{h \to 0^+} \frac{f(1+h) - f(1)}{h} \] For \( 1+h > 1 \) (i.e., \( h > 0 \)): \[ f(1+h) = \log(1+h) \] Therefore, \[ f'(1^+) = \lim_{h \to 0^+} \frac{\log(1+h) - 0}{h} = \lim_{h \to 0^+} \frac{\log(1+h)}{h} \] Using the expansion \( \log(1+h) \approx h \) as \( h \to 0 \): \[ f'(1^+) = \lim_{h \to 0^+} \frac{h}{h} = 1 \] 4. **Find the left-hand derivative (LHD) at \( x = 1 \)**: \[ f'(1^-) = \lim_{h \to 0^+} \frac{f(1-h) - f(1)}{-h} \] For \( 1-h < 1 \) (i.e., \( h > 0 \)): \[ f(1-h) = -\log(1-h) \] Therefore, \[ f'(1^-) = \lim_{h \to 0^+} \frac{-\log(1-h)}{-h} = \lim_{h \to 0^+} \frac{\log(1-h)}{h} \] Using the expansion \( \log(1-h) \approx -h \) as \( h \to 0 \): \[ f'(1^-) = \lim_{h \to 0^+} \frac{-h}{h} = -1 \] 5. **Conclusion about the derivative at \( x = 1 \)**: Since \( f'(1^+) = 1 \) and \( f'(1^-) = -1 \), the left-hand and right-hand derivatives at \( x = 1 \) are not equal. Therefore, the derivative \( f'(1) \) is not defined. 6. **Evaluate \( f'(x) \) for \( x < 1 \) and \( x > 1 \)**: - For \( x > 1 \): \[ f'(x) = \frac{1}{x} \] - For \( 0 < x < 1 \): \[ f'(x) = -\frac{1}{x} \] ### Final Result: - \( f'(x) = \frac{1}{x} \) for \( x > 1 \) - \( f'(x) = -\frac{1}{x} \) for \( 0 < x < 1 \) - \( f'(1) \) is not defined.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log|x|,xne0 then f'(x) equals

If f(x)=log|x|,xne0 , then what is f(x) equal to ?

If f(x)=|log x|,x>0, find f'(1/e) and f'(e).

If f (x) = log_(x) (log x) , then f'(x) at x = e is …….. .

If f(x)=log_(x)(ln x) then f'(x) at x=e is

If 3 f(x) - f((1)/(x) ) = log x^(4) , then f(e^(-x)) is

If f(x) = log (x – 2) – 1/x , then

f(x) =log _x (log x) ,then f'(x) at x =eis