Home
Class 12
MATHS
Given the parametic equations x= f ...

Given the parametic equations ` x= f (t) , y= g(t) ` then ` (d^2 y)/(dx^2)` equals

A

`((d^2 y)/(dt^2) . (dx)/(dt) - (dy)/(dt)- (dy)/(dt) (d^2 x)/(dt^2))/((dx // dt)^2)`

B

`((dx)/(dt)(d^2 y)/(dt^2) - (d^2 x )/(dt^2 ) (dy)/(dt))/((dx //dt)^3)`

C

`(d^2y )/(dt^2) // (d^2 x)/(dx^2)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \(\frac{d^2y}{dx^2}\) given the parametric equations \(x = f(t)\) and \(y = g(t)\), we can follow these steps: ### Step 1: Find the first derivative \(\frac{dy}{dx}\) Using the chain rule for parametric equations, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \] ### Step 2: Differentiate \(\frac{dy}{dx}\) with respect to \(x\) To find \(\frac{d^2y}{dx^2}\), we need to differentiate \(\frac{dy}{dx}\) with respect to \(x\). This is done using the chain rule again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) \] Using the chain rule, we can express this as: \[ \frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx} \] ### Step 3: Substitute \(\frac{dy}{dx}\) into the differentiation Substituting \(\frac{dy}{dx}\) from Step 1, we have: \[ \frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\right) \cdot \frac{dt}{dx} \] ### Step 4: Apply the quotient rule Now we apply the quotient rule to differentiate \(\frac{dy}{dx}\): \[ \frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{\frac{d^2y}{dt^2} \cdot \frac{dx}{dt} - \frac{dy}{dt} \cdot \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^2} \] ### Step 5: Substitute back into the expression for \(\frac{d^2y}{dx^2}\) Now substituting this back into our expression for \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \left(\frac{\frac{d^2y}{dt^2} \cdot \frac{dx}{dt} - \frac{dy}{dt} \cdot \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^2}\right) \cdot \frac{1}{\frac{dx}{dt}} \] ### Step 6: Simplify the expression This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{d^2y/dt^2 \cdot dx/dt - dy/dt \cdot d^2x/dt^2}{\left(\frac{dx}{dt}\right)^3} \] ### Final Result Thus, the final expression for the second derivative \(\frac{d^2y}{dx^2}\) is: \[ \frac{d^2y}{dx^2} = \frac{\frac{d^2y}{dt^2} \cdot \frac{dx}{dt} - \frac{dy}{dt} \cdot \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x=f(t) and y=g(t), then (d^(2)y)/(dx^(2)) is equal to

If y =f (x) and z=g(x) then (d^(2)y)/(dx ^(2)) equals

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

If a curve is represented parametrically by the equation x=f(t) and y=g(t)" then prove that "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(3)((d^(2)x)/(dy^(2)))

If a curve is represented parametrically by the equation x=f(t) and y=g(t)" then prove that "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(3)((d^(2)x)/(dy^(2)))