Home
Class 12
MATHS
if x=t +(1)/(t) , y=t-(1)/(t) , then (...

if ` x=t +(1)/(t) , y=t-(1)/(t) ,` then `(d^2 y)/( dx^2)` is equal to

A

`-4t(t^2 -1)^(-2)`

B

`-4t^3 (t^2 -1)^(-3)`

C

`(t^2 +1)(t^2-1)^(-1)`

D

`-4t^2 (t^2 -1)^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) given the parametric equations \(x = t + \frac{1}{t}\) and \(y = t - \frac{1}{t}\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) We start by differentiating \(y\) with respect to \(t\): \[ \frac{dy}{dt} = \frac{d}{dt}\left(t - \frac{1}{t}\right) = 1 + \frac{1}{t^2} \] ### Step 2: Differentiate \(x\) with respect to \(t\) Next, we differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = \frac{d}{dt}\left(t + \frac{1}{t}\right) = 1 - \frac{1}{t^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the formula: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1 + \frac{1}{t^2}}{1 - \frac{1}{t^2}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{(1 + \frac{1}{t^2})}{(1 - \frac{1}{t^2})} = \frac{t^2 + 1}{t^2 - 1} \] ### Step 4: Differentiate \(\frac{dy}{dx}\) with respect to \(t\) Next, we differentiate \(\frac{dy}{dx}\) with respect to \(t\): Let \(u = t^2 + 1\) and \(v = t^2 - 1\). We will use the quotient rule: \[ \frac{d}{dt}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Calculating \(\frac{du}{dt}\) and \(\frac{dv}{dt}\): \[ \frac{du}{dt} = 2t, \quad \frac{dv}{dt} = 2t \] Now substituting back: \[ \frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{(t^2 - 1)(2t) - (t^2 + 1)(2t)}{(t^2 - 1)^2} \] This simplifies to: \[ \frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{2t(t^2 - 1 - t^2 - 1)}{(t^2 - 1)^2} = \frac{-4t}{(t^2 - 1)^2} \] ### Step 5: Find \(\frac{d^2y}{dx^2}\) Now we can find \(\frac{d^2y}{dx^2}\) using the chain rule: \[ \frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{1}{\frac{dx}{dt}} = \frac{-4t}{(t^2 - 1)^2} \cdot \frac{1}{1 - \frac{1}{t^2}} \] Substituting \(\frac{dx}{dt}\): \[ \frac{d^2y}{dx^2} = \frac{-4t}{(t^2 - 1)^2} \cdot \frac{t^2}{t^2 - 1} = \frac{-4t^3}{(t^2 - 1)^3} \] ### Final Result Thus, the final result is: \[ \frac{d^2y}{dx^2} = \frac{-4t^3}{(t^2 - 1)^3} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x=(t+(1)/(t)),y=(t-(1)/(t)) , then (dy)/(dx)=?

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to

If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=

If x=f(t) and y=g(t), then (d^(2)y)/(dx^(2)) is equal to

If x=t^(2)+(1)/(t^(2)),y=t-(1)/(t)," then "(dy)/(dx)=

If x=2(t+(1)/(t)),y=3(t-(1)/(t)) then (x^(2))/(4)-(y^(2))/(9) is equal to

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. Given the parametic equations x= f (t) , y= g(t) then (d^2 y)...

    Text Solution

    |

  2. If y^(2) = p (x) is a polynomial of degree 3 , then what is 2 "" (d)/(...

    Text Solution

    |

  3. if x=t +(1)/(t) , y=t-(1)/(t) , then (d^2 y)/( dx^2) is equal to

    Text Solution

    |

  4. If y=e^(2x) then (d^2 y)/(dx^2) . (d^2 x)/(dy^2) is equal to

    Text Solution

    |

  5. If y=(1)/(2) x sqrt""(x^2 +a^2 ) +1/2 a^2 log [x+ sqrt(x^2 +a^2 )] , ...

    Text Solution

    |

  6. if Y= log((1 + sqrt""x)/(1-sqrt""x )) then (dy)/(dx) =

    Text Solution

    |

  7. If f(x) = log(x^2) (log x) then f' (x) at x=e is

    Text Solution

    |

  8. If log(x) (log x) , then f' (x) at x=e is

    Text Solution

    |

  9. If Y= log7 (log7 x), then (dy)/(dx) =

    Text Solution

    |

  10. if f(x) = log5 log3 x, then f '(e ) is

    Text Solution

    |

  11. If y= log x^x , then (dy)/(dx)=

    Text Solution

    |

  12. If Y=f ((2x -1)/(x^2 +1)) and f'(x) = sin x^2 , then (dy)/(dx) at ...

    Text Solution

    |

  13. if y= x +e^x , then (d^2 x)/(dy^2) is

    Text Solution

    |

  14. If y= Ke^(x//(x-a)) then (dy)/(dx) is equal to

    Text Solution

    |

  15. If x^p y^q = (x +y) ^(p+q) , then (dy)/(dx) is equal to also s...

    Text Solution

    |

  16. If sin^(-1)"" ((x^2-y^2 )/(x^2 +y^2))=log a then (dy)/(dx) equals

    Text Solution

    |

  17. If y=(1+x^(1//4))(1+x^(1//2))(1-x^(1//4)), then what is (dy)/(dx) equa...

    Text Solution

    |

  18. If y^(1/m)= x + sqrt (1 + x^(2)) "then" (1 + x^(2))y(2)+ xy (1) = ?

    Text Solution

    |

  19. if y= {x+ sqrt""(x^2 + a^2 )} ^n then (dy)/(dx) =

    Text Solution

    |

  20. if e^y +xy = e then the value of (d^2 y)/( dx^2) for x=0 is

    Text Solution

    |