Home
Class 12
MATHS
If y=(1)/(2) x sqrt""(x^2 +a^2 ) +1/2 a...

If ` y=(1)/(2) x sqrt""(x^2 +a^2 ) +1/2 a^2 log [x+ sqrt(x^2 +a^2 )]` , then `(dy)/(dx)`=

A

`x sqrt""(x^2 +a^2)`

B

`1/2 sqrt""(x^2 +a^2)`

C

`sqrt""(x^2 +a^2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \[ y = \frac{1}{2} x \sqrt{x^2 + a^2} + \frac{1}{2} a^2 \log \left( x + \sqrt{x^2 + a^2} \right), \] we will differentiate it step by step. ### Step 1: Differentiate the first term The first term is \[ \frac{1}{2} x \sqrt{x^2 + a^2}. \] Using the product rule, where \( u = x \) and \( v = \sqrt{x^2 + a^2} \): \[ \frac{dy_1}{dx} = \frac{1}{2} \left( u \frac{dv}{dx} + v \frac{du}{dx} \right). \] Calculating \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): - \( \frac{du}{dx} = 1 \) - To find \( \frac{dv}{dx} \): Using the chain rule, \[ v = (x^2 + a^2)^{1/2} \implies \frac{dv}{dx} = \frac{1}{2}(x^2 + a^2)^{-1/2} \cdot (2x) = \frac{x}{\sqrt{x^2 + a^2}}. \] Now substituting back into the product rule: \[ \frac{dy_1}{dx} = \frac{1}{2} \left( x \cdot \frac{x}{\sqrt{x^2 + a^2}} + \sqrt{x^2 + a^2} \cdot 1 \right) = \frac{1}{2} \left( \frac{x^2}{\sqrt{x^2 + a^2}} + \sqrt{x^2 + a^2} \right). \] ### Step 2: Differentiate the second term The second term is \[ \frac{1}{2} a^2 \log \left( x + \sqrt{x^2 + a^2} \right). \] Using the chain rule: \[ \frac{dy_2}{dx} = \frac{1}{2} a^2 \cdot \frac{1}{x + \sqrt{x^2 + a^2}} \cdot \left( 1 + \frac{x}{\sqrt{x^2 + a^2}} \right). \] The derivative of \( \log(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \), where \( u = x + \sqrt{x^2 + a^2} \). Calculating \( \frac{du}{dx} \): \[ \frac{du}{dx} = 1 + \frac{x}{\sqrt{x^2 + a^2}}. \] Thus, \[ \frac{dy_2}{dx} = \frac{1}{2} a^2 \cdot \frac{1}{x + \sqrt{x^2 + a^2}} \cdot \left( 1 + \frac{x}{\sqrt{x^2 + a^2}} \right). \] ### Step 3: Combine the derivatives Now, we combine both derivatives: \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{x^2}{\sqrt{x^2 + a^2}} + \sqrt{x^2 + a^2} \right) + \frac{1}{2} a^2 \cdot \frac{1}{x + \sqrt{x^2 + a^2}} \cdot \left( 1 + \frac{x}{\sqrt{x^2 + a^2}} \right). \] ### Step 4: Simplify the expression To simplify, we can factor out common terms and combine fractions as needed. 1. Factor out \( \frac{1}{2} \) from both terms. 2. Find a common denominator for the fractions. After simplification, we will arrive at the final expression for \( \frac{dy}{dx} \). ### Final Result The final result is: \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{x^2 + a^2}{\sqrt{x^2 + a^2}} + \frac{a^2}{x + \sqrt{x^2 + a^2}} \cdot \left( 1 + \frac{x}{\sqrt{x^2 + a^2}} \right) \right). \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y = log (x + sqrt(x^(2) + a^(2))) " then " (dy)/(dx) = ?

If y=log(x+sqrt(x^(2)+a^(2)) then find (dy)/(dx)

If y=x/2 sqrt(a^(2)+x^(2)) +a^(2)/2 log(x+sqrt(x^(2)+a^(2))) , then (dy)/(dx)=

If y= log [x + sqrt(9 + x^(2))], "then" (dy)/(dx) is equal to

If y=log(x+sqrt(x^(2)-1)), then (dy)/(dx)=

If y=(x)/(2)sqrt(x^(2)-a^(2))-(a^(2))/(2)log(x+sqrt(x^(2)-a^(2))) show that (dy)/(dx)=sqrt(x^(2)-a^(2))

If y=log(sqrt(x+sqrt(x^(2)+a^(2))))" then: "(dy)/(dx)=

y=ln(x+sqrt(x^(2)+a^(2))). Find (dy)/(dx)

If x ^(2)y^(2) =tan ^(-1) sqrt(x^(2) +y^(2) )+cot ^(-1) sqrt(x^(2) +y^(2)),then (dy)/(dx)=

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. if x=t +(1)/(t) , y=t-(1)/(t) , then (d^2 y)/( dx^2) is equal to

    Text Solution

    |

  2. If y=e^(2x) then (d^2 y)/(dx^2) . (d^2 x)/(dy^2) is equal to

    Text Solution

    |

  3. If y=(1)/(2) x sqrt""(x^2 +a^2 ) +1/2 a^2 log [x+ sqrt(x^2 +a^2 )] , ...

    Text Solution

    |

  4. if Y= log((1 + sqrt""x)/(1-sqrt""x )) then (dy)/(dx) =

    Text Solution

    |

  5. If f(x) = log(x^2) (log x) then f' (x) at x=e is

    Text Solution

    |

  6. If log(x) (log x) , then f' (x) at x=e is

    Text Solution

    |

  7. If Y= log7 (log7 x), then (dy)/(dx) =

    Text Solution

    |

  8. if f(x) = log5 log3 x, then f '(e ) is

    Text Solution

    |

  9. If y= log x^x , then (dy)/(dx)=

    Text Solution

    |

  10. If Y=f ((2x -1)/(x^2 +1)) and f'(x) = sin x^2 , then (dy)/(dx) at ...

    Text Solution

    |

  11. if y= x +e^x , then (d^2 x)/(dy^2) is

    Text Solution

    |

  12. If y= Ke^(x//(x-a)) then (dy)/(dx) is equal to

    Text Solution

    |

  13. If x^p y^q = (x +y) ^(p+q) , then (dy)/(dx) is equal to also s...

    Text Solution

    |

  14. If sin^(-1)"" ((x^2-y^2 )/(x^2 +y^2))=log a then (dy)/(dx) equals

    Text Solution

    |

  15. If y=(1+x^(1//4))(1+x^(1//2))(1-x^(1//4)), then what is (dy)/(dx) equa...

    Text Solution

    |

  16. If y^(1/m)= x + sqrt (1 + x^(2)) "then" (1 + x^(2))y(2)+ xy (1) = ?

    Text Solution

    |

  17. if y= {x+ sqrt""(x^2 + a^2 )} ^n then (dy)/(dx) =

    Text Solution

    |

  18. if e^y +xy = e then the value of (d^2 y)/( dx^2) for x=0 is

    Text Solution

    |

  19. if sqrt(x+y)+sqrt(y-x)=c then (d^2 y)/(dx^2) equals

    Text Solution

    |

  20. if phi is inverse of f and f'(x) =(1)/( 1 +x^n) then phi '[x] equ...

    Text Solution

    |