Home
Class 12
MATHS
if Y= log((1 + sqrt""x)/(1-sqrt""x )) t...

if ` Y= log((1 + sqrt""x)/(1-sqrt""x ))` then ` (dy)/(dx) =`

A

`(1)/(sqrt""x(1+x))`

B

`(1)/(sqrt"" x (1-x))`

C

`(sqrt""x)/(1+x)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( Y = \log\left(\frac{1 + \sqrt{x}}{1 - \sqrt{x}}\right) \), we will use the chain rule and the quotient rule for differentiation. Let's go through the steps: ### Step 1: Differentiate using the chain rule We start by applying the chain rule to differentiate \( Y \): \[ \frac{dY}{dx} = \frac{1}{\frac{1 + \sqrt{x}}{1 - \sqrt{x}}} \cdot \frac{d}{dx}\left(\frac{1 + \sqrt{x}}{1 - \sqrt{x}}\right) \] ### Step 2: Differentiate the inner function using the quotient rule Let \( u = 1 + \sqrt{x} \) and \( v = 1 - \sqrt{x} \). Then, we apply the quotient rule: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): \[ \frac{du}{dx} = \frac{1}{2\sqrt{x}}, \quad \frac{dv}{dx} = -\frac{1}{2\sqrt{x}} \] ### Step 3: Substitute back into the quotient rule Substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule gives: \[ \frac{d}{dx}\left(\frac{1 + \sqrt{x}}{1 - \sqrt{x}}\right) = \frac{(1 - \sqrt{x})\left(\frac{1}{2\sqrt{x}}\right) - (1 + \sqrt{x})\left(-\frac{1}{2\sqrt{x}}\right)}{(1 - \sqrt{x})^2} \] ### Step 4: Simplify the numerator Now, simplify the numerator: \[ = \frac{(1 - \sqrt{x})\left(\frac{1}{2\sqrt{x}}\right) + (1 + \sqrt{x})\left(\frac{1}{2\sqrt{x}}\right)}{(1 - \sqrt{x})^2} \] \[ = \frac{\frac{1 - \sqrt{x} + 1 + \sqrt{x}}{2\sqrt{x}}}{(1 - \sqrt{x})^2} \] \[ = \frac{\frac{2}{2\sqrt{x}}}{(1 - \sqrt{x})^2} = \frac{1}{\sqrt{x}(1 - \sqrt{x})^2} \] ### Step 5: Combine everything Now substitute this back into the derivative of \( Y \): \[ \frac{dY}{dx} = \frac{1}{\frac{1 + \sqrt{x}}{1 - \sqrt{x}}} \cdot \frac{1}{\sqrt{x}(1 - \sqrt{x})^2} \] \[ = \frac{1 - \sqrt{x}}{1 + \sqrt{x}} \cdot \frac{1}{\sqrt{x}(1 - \sqrt{x})^2} \] ### Step 6: Final simplification Now simplify this expression: \[ = \frac{(1 - \sqrt{x})}{\sqrt{x}(1 + \sqrt{x})(1 - \sqrt{x})^2} \] The \( (1 - \sqrt{x}) \) cancels out: \[ = \frac{1}{\sqrt{x}(1 + \sqrt{x})(1 - \sqrt{x})} \] Thus, the final answer is: \[ \frac{dY}{dx} = \frac{1}{\sqrt{x}(1 - x)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx)=

If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)

If y= log (sqrt(x - 1)) - sqrt(x + 1)) , "then " (dy)/(dx) is equal to

If y= (sqrt( x) +(1)/(sqrt(x)) ) ^(5) , then (dy)/(dx) =

If y = log (x + sqrt(x^(2) + a^(2))) " then " (dy)/(dx) = ?

If y=log(sqrt(x) + sqrt(x-a)) , then (dy)/(dx) is

If y=log sqrt((1-cos x)/(1+ cos x)) , then (dy)/(dx) is

If x=(1-sqrt(y))/(1+sqrt(y)) then (dy)/(dx) is equal to

If y=log(sqrt(x+sqrt(x^(2)+a^(2))))" then: "(dy)/(dx)=