Home
Class 12
MATHS
If x^p y^q = (x +y) ^(p+q) , then ...

If ` x^p y^q = (x +y) ^(p+q) , ` then ` (dy)/(dx)` is equal to also show that ` (d^2 y)/(dx^2 )=0`

A

`(y)/(x)`

B

`(py)/(q) x`

C

`(x)/(y)`

D

`q (y)/(px)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ x^p y^q = (x + y)^{p + q} \] ### Step 1: Differentiate both sides with respect to \( x \) Using implicit differentiation, we differentiate both sides: \[ \frac{d}{dx}(x^p y^q) = \frac{d}{dx}((x + y)^{p + q}) \] ### Step 2: Apply the product rule on the left side Using the product rule on the left side, we have: \[ \frac{d}{dx}(x^p) \cdot y^q + x^p \cdot \frac{d}{dx}(y^q) = (p \cdot x^{p-1} \cdot y^q + x^p \cdot q \cdot y^{q-1} \cdot \frac{dy}{dx}) \] ### Step 3: Apply the chain rule on the right side Using the chain rule on the right side, we have: \[ (p + q)(x + y)^{p + q - 1} \cdot \left(1 + \frac{dy}{dx}\right) \] ### Step 4: Set the derivatives equal Now we equate both sides: \[ p \cdot x^{p-1} \cdot y^q + x^p \cdot q \cdot y^{q-1} \cdot \frac{dy}{dx} = (p + q)(x + y)^{p + q - 1} \cdot \left(1 + \frac{dy}{dx}\right) \] ### Step 5: Rearrange to isolate \( \frac{dy}{dx} \) Rearranging gives us: \[ x^p \cdot q \cdot y^{q-1} \cdot \frac{dy}{dx} - (p + q)(x + y)^{p + q - 1} \cdot \frac{dy}{dx} = (p + q)(x + y)^{p + q - 1} - p \cdot x^{p-1} \cdot y^q \] ### Step 6: Factor out \( \frac{dy}{dx} \) Factoring out \( \frac{dy}{dx} \): \[ \left( x^p \cdot q \cdot y^{q-1} - (p + q)(x + y)^{p + q - 1} \right) \cdot \frac{dy}{dx} = (p + q)(x + y)^{p + q - 1} - p \cdot x^{p-1} \cdot y^q \] ### Step 7: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{(p + q)(x + y)^{p + q - 1} - p \cdot x^{p-1} \cdot y^q}{x^p \cdot q \cdot y^{q-1} - (p + q)(x + y)^{p + q - 1}} \] ### Step 8: Show that \( \frac{d^2y}{dx^2} = 0 \) To show that \( \frac{d^2y}{dx^2} = 0 \), we differentiate \( \frac{dy}{dx} \) again. Since \( \frac{dy}{dx} \) is a constant (as derived from the equation), its second derivative will be zero. ### Final Result Thus, we conclude that: \[ \frac{dy}{dx} = 0 \] \[ \frac{d^2y}{dx^2} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

Q.if y=log_(10)x, then (dy)/(dx) is equal to -

If x+y=2^(y), then (dy)/(dx) equals-

If x^(p)y^(q)=(x+y)^(p+q) , prove that (dy)/(dx)=(y)/(x)

Q.if y=x^(2)sin x, then (dy)/(dx) will be-

x^(p)*y^(q) = (x+y)^(p+q) prove that dy/dx= y/x

If x^(p)y^(q)=(x+y)^(p+q) , show that dy/dx=y/x .

If y=cot x show that (d^(2)y)/(dx^(2))+2y(dy)/(dx)=0

If y=e^(2x) , then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. if y= x +e^x , then (d^2 x)/(dy^2) is

    Text Solution

    |

  2. If y= Ke^(x//(x-a)) then (dy)/(dx) is equal to

    Text Solution

    |

  3. If x^p y^q = (x +y) ^(p+q) , then (dy)/(dx) is equal to also s...

    Text Solution

    |

  4. If sin^(-1)"" ((x^2-y^2 )/(x^2 +y^2))=log a then (dy)/(dx) equals

    Text Solution

    |

  5. If y=(1+x^(1//4))(1+x^(1//2))(1-x^(1//4)), then what is (dy)/(dx) equa...

    Text Solution

    |

  6. If y^(1/m)= x + sqrt (1 + x^(2)) "then" (1 + x^(2))y(2)+ xy (1) = ?

    Text Solution

    |

  7. if y= {x+ sqrt""(x^2 + a^2 )} ^n then (dy)/(dx) =

    Text Solution

    |

  8. if e^y +xy = e then the value of (d^2 y)/( dx^2) for x=0 is

    Text Solution

    |

  9. if sqrt(x+y)+sqrt(y-x)=c then (d^2 y)/(dx^2) equals

    Text Solution

    |

  10. if phi is inverse of f and f'(x) =(1)/( 1 +x^n) then phi '[x] equ...

    Text Solution

    |

  11. if 2f ( sin x) + f( cos x) = x then (d)/(dx) f(x) Is

    Text Solution

    |

  12. if f'(x) = sin ( log x) and y = f((2x +3)/(3-2x)) then (dy)/(dx) ...

    Text Solution

    |

  13. If for a continuous function f,f(0) = f(1) =0 , f '(1) = 2 and g...

    Text Solution

    |

  14. Let F(x) =(f(x/2))^(2) +(g(x/2))^(2). F(5)=5 and f''(x) =-f(x), g(x) =...

    Text Solution

    |

  15. f and g are two differentiable functions which satisfy the cond...

    Text Solution

    |

  16. Y1 = (dy)/(dx) and Y2 =(d^2 y)/( dx^2) . If Y= sin ( m sin^(-1)...

    Text Solution

    |

  17. If Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)^2 , then (1-x^2) (d^2 y)/(d...

    Text Solution

    |

  18. If y= ( sin^(-1)"" x)^2 +(cos^(-1) "" x)^2 then (1-x^2) (d^2y)/(dx...

    Text Solution

    |

  19. Differential coefficient of log(10)x " " w.r.t " " logx 10 is

    Text Solution

    |

  20. If Y= log [Sec (e^(x^2))] then (dy)/(dx) is equal to

    Text Solution

    |