Home
Class 12
MATHS
if y= {x+ sqrt""(x^2 + a^2 )} ^n then...

if `y= {x+ sqrt""(x^2 + a^2 )} ^n ` then ` (dy)/(dx)` =

A

`(nx)/(sqrt""(x^2 +a^2))`

B

`(n)/(sqrt""(x^2 +a^2))`

C

`(ny)/(sqrt""(x^2+a^2))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (x + \sqrt{x^2 + a^2})^n \), we will apply the chain rule for differentiation. Here’s a step-by-step solution: ### Step 1: Identify the outer and inner functions We can express the function as: - Outer function: \( u^n \) where \( u = x + \sqrt{x^2 + a^2} \) - Inner function: \( u = x + \sqrt{x^2 + a^2} \) ### Step 2: Differentiate the outer function Using the chain rule, the derivative of \( y \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] The derivative of the outer function \( u^n \) is: \[ \frac{dy}{du} = n \cdot u^{n-1} \] ### Step 3: Differentiate the inner function Now, we need to find \( \frac{du}{dx} \): \[ u = x + \sqrt{x^2 + a^2} \] To differentiate \( u \), we will differentiate each term: 1. The derivative of \( x \) is \( 1 \). 2. For \( \sqrt{x^2 + a^2} \), we use the chain rule: \[ \frac{d}{dx}(\sqrt{x^2 + a^2}) = \frac{1}{2\sqrt{x^2 + a^2}} \cdot \frac{d}{dx}(x^2 + a^2) = \frac{1}{2\sqrt{x^2 + a^2}} \cdot (2x) = \frac{x}{\sqrt{x^2 + a^2}} \] So, we have: \[ \frac{du}{dx} = 1 + \frac{x}{\sqrt{x^2 + a^2}} \] ### Step 4: Combine the derivatives Now, substituting back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = n \cdot (x + \sqrt{x^2 + a^2})^{n-1} \cdot \left(1 + \frac{x}{\sqrt{x^2 + a^2}}\right) \] ### Step 5: Simplify the expression We can simplify \( 1 + \frac{x}{\sqrt{x^2 + a^2}} \): \[ 1 + \frac{x}{\sqrt{x^2 + a^2}} = \frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}} \] Thus, the derivative becomes: \[ \frac{dy}{dx} = n \cdot (x + \sqrt{x^2 + a^2})^{n-1} \cdot \frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}} \] ### Final Result The final expression for the derivative is: \[ \frac{dy}{dx} = n \cdot (x + \sqrt{x^2 + a^2})^{n-1} \cdot \frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y = log (x + sqrt(x^(2) + a^(2))) " then " (dy)/(dx) = ?

If y={x+sqrt(x^(2)+a^(2))}^(n), then prove that (dy)/(dx)=(ny)/(sqrt((x^(2)+a^(2))))

If y={x+sqrt(x^(2)+a^(2))}^(n), then prove that (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))

If y =sqrt(a^(2) + sqrt( a^(2)+ x^(2)) ),then (dy)/(dx) =

If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=

If y=[x+sqrt(x^(2)+a^(2))]^(n) then prove that (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))

If x=sqrt(1-y^2) , then (dy)/(dx)=

If y=log(x+sqrt(x^(2)+a^(2)) then find (dy)/(dx)

If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/(dx) = ?

if y=sqrt(x^(2)+a^(2)), then show that y(dy)/(dx)=x

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. If y=(1+x^(1//4))(1+x^(1//2))(1-x^(1//4)), then what is (dy)/(dx) equa...

    Text Solution

    |

  2. If y^(1/m)= x + sqrt (1 + x^(2)) "then" (1 + x^(2))y(2)+ xy (1) = ?

    Text Solution

    |

  3. if y= {x+ sqrt""(x^2 + a^2 )} ^n then (dy)/(dx) =

    Text Solution

    |

  4. if e^y +xy = e then the value of (d^2 y)/( dx^2) for x=0 is

    Text Solution

    |

  5. if sqrt(x+y)+sqrt(y-x)=c then (d^2 y)/(dx^2) equals

    Text Solution

    |

  6. if phi is inverse of f and f'(x) =(1)/( 1 +x^n) then phi '[x] equ...

    Text Solution

    |

  7. if 2f ( sin x) + f( cos x) = x then (d)/(dx) f(x) Is

    Text Solution

    |

  8. if f'(x) = sin ( log x) and y = f((2x +3)/(3-2x)) then (dy)/(dx) ...

    Text Solution

    |

  9. If for a continuous function f,f(0) = f(1) =0 , f '(1) = 2 and g...

    Text Solution

    |

  10. Let F(x) =(f(x/2))^(2) +(g(x/2))^(2). F(5)=5 and f''(x) =-f(x), g(x) =...

    Text Solution

    |

  11. f and g are two differentiable functions which satisfy the cond...

    Text Solution

    |

  12. Y1 = (dy)/(dx) and Y2 =(d^2 y)/( dx^2) . If Y= sin ( m sin^(-1)...

    Text Solution

    |

  13. If Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)^2 , then (1-x^2) (d^2 y)/(d...

    Text Solution

    |

  14. If y= ( sin^(-1)"" x)^2 +(cos^(-1) "" x)^2 then (1-x^2) (d^2y)/(dx...

    Text Solution

    |

  15. Differential coefficient of log(10)x " " w.r.t " " logx 10 is

    Text Solution

    |

  16. If Y= log [Sec (e^(x^2))] then (dy)/(dx) is equal to

    Text Solution

    |

  17. If x= sqrt((1-t^2)/( 1+t^2)) and y= ( sqrt(1+t^2) - sqrt(1-t^2)) th...

    Text Solution

    |

  18. If f(x) = Sigma(r=1)^(n) [cos (2 r-1) x+ I sin ( 2r -1) x] then...

    Text Solution

    |

  19. if x= f (t) cos t- f'(t) sin t and y= f (t) sin t + f'(t ) cos...

    Text Solution

    |

  20. If x = sec theta - cos theta and y= sec^n theta - cos^n ...

    Text Solution

    |