Home
Class 12
MATHS
if e^y +xy = e then the value of (d^...

if `e^y +xy = e ` then the value of `(d^2 y)/( dx^2)` for x=0 is

A

`1//e`

B

`1//e^2`

C

`1//e^3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{d^2y}{dx^2}\) at \(x = 0\) for the equation \(e^y + xy = e\), we will follow these steps: ### Step 1: Find \(y\) when \(x = 0\) Substituting \(x = 0\) into the equation: \[ e^y + 0 \cdot y = e \implies e^y = e \] Taking the natural logarithm of both sides: \[ y = 1 \] ### Step 2: Differentiate the equation implicitly Differentiating both sides of the equation \(e^y + xy = e\) with respect to \(x\): \[ \frac{d}{dx}(e^y) + \frac{d}{dx}(xy) = \frac{d}{dx}(e) \] Using the chain rule and product rule: \[ e^y \frac{dy}{dx} + \left(x \frac{dy}{dx} + y\right) = 0 \] This simplifies to: \[ e^y \frac{dy}{dx} + x \frac{dy}{dx} + y = 0 \] Rearranging gives: \[ (e^y + x) \frac{dy}{dx} + y = 0 \] ### Step 3: Solve for \(\frac{dy}{dx}\) at \(x = 0\) Substituting \(x = 0\) and \(y = 1\): \[ (e^1 + 0) \frac{dy}{dx} + 1 = 0 \implies (e) \frac{dy}{dx} + 1 = 0 \] Thus, \[ \frac{dy}{dx} = -\frac{1}{e} \] ### Step 4: Differentiate again to find \(\frac{d^2y}{dx^2}\) Differentiating the equation \(e^y \frac{dy}{dx} + (x \frac{dy}{dx} + y) = 0\) again: \[ \frac{d}{dx}(e^y \frac{dy}{dx}) + \frac{d}{dx}(x \frac{dy}{dx}) + \frac{dy}{dx} = 0 \] Using the product rule: \[ \left(e^y \frac{d^2y}{dx^2} + e^y \left(\frac{dy}{dx}\right)^2\right) + \left(\frac{dy}{dx} + x \frac{d^2y}{dx^2}\right) + \frac{d^2y}{dx^2} = 0 \] Combining terms gives: \[ e^y \frac{d^2y}{dx^2} + e^y \left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} + x \frac{d^2y}{dx^2} + \frac{d^2y}{dx^2} = 0 \] Factoring out \(\frac{d^2y}{dx^2}\): \[ \left(e^y + x + 1\right) \frac{d^2y}{dx^2} + e^y \left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} = 0 \] ### Step 5: Substitute \(x = 0\) and \(y = 1\) to find \(\frac{d^2y}{dx^2}\) Substituting \(x = 0\), \(y = 1\), and \(\frac{dy}{dx} = -\frac{1}{e}\): \[ \left(e^1 + 0 + 1\right) \frac{d^2y}{dx^2} + e^1 \left(-\frac{1}{e}\right)^2 - \frac{1}{e} = 0 \] This simplifies to: \[ (2e) \frac{d^2y}{dx^2} + \frac{1}{e} - \frac{1}{e} = 0 \] Thus: \[ (2e) \frac{d^2y}{dx^2} = 0 \implies \frac{d^2y}{dx^2} = 0 \] ### Conclusion The value of \(\frac{d^2y}{dx^2}\) at \(x = 0\) is: \[ \frac{d^2y}{dx^2} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

If (dy)/(dx)=e^(-2y) and y=0 when x=5, then the value of x for y=3 is

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If x = e^(t) sin t and y = e^(t) cos t, t is a parameter , then the value of (d^(2) x)/( dy^(2)) + (d^(2) y)/(dx^(2)) at t = 0 , is :

If e^(y) +xy = e , the ordered pair ((dy)/(dx),(d^(2)y)/(dx^(2))) at x = 0 is equal to

If y=e^( sinx ) the value of (dy)/(dx) at x=(pi)/(2) is , (a) 1 , (b) e , (c) 0 ,(d) not defined .

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. If y^(1/m)= x + sqrt (1 + x^(2)) "then" (1 + x^(2))y(2)+ xy (1) = ?

    Text Solution

    |

  2. if y= {x+ sqrt""(x^2 + a^2 )} ^n then (dy)/(dx) =

    Text Solution

    |

  3. if e^y +xy = e then the value of (d^2 y)/( dx^2) for x=0 is

    Text Solution

    |

  4. if sqrt(x+y)+sqrt(y-x)=c then (d^2 y)/(dx^2) equals

    Text Solution

    |

  5. if phi is inverse of f and f'(x) =(1)/( 1 +x^n) then phi '[x] equ...

    Text Solution

    |

  6. if 2f ( sin x) + f( cos x) = x then (d)/(dx) f(x) Is

    Text Solution

    |

  7. if f'(x) = sin ( log x) and y = f((2x +3)/(3-2x)) then (dy)/(dx) ...

    Text Solution

    |

  8. If for a continuous function f,f(0) = f(1) =0 , f '(1) = 2 and g...

    Text Solution

    |

  9. Let F(x) =(f(x/2))^(2) +(g(x/2))^(2). F(5)=5 and f''(x) =-f(x), g(x) =...

    Text Solution

    |

  10. f and g are two differentiable functions which satisfy the cond...

    Text Solution

    |

  11. Y1 = (dy)/(dx) and Y2 =(d^2 y)/( dx^2) . If Y= sin ( m sin^(-1)...

    Text Solution

    |

  12. If Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)^2 , then (1-x^2) (d^2 y)/(d...

    Text Solution

    |

  13. If y= ( sin^(-1)"" x)^2 +(cos^(-1) "" x)^2 then (1-x^2) (d^2y)/(dx...

    Text Solution

    |

  14. Differential coefficient of log(10)x " " w.r.t " " logx 10 is

    Text Solution

    |

  15. If Y= log [Sec (e^(x^2))] then (dy)/(dx) is equal to

    Text Solution

    |

  16. If x= sqrt((1-t^2)/( 1+t^2)) and y= ( sqrt(1+t^2) - sqrt(1-t^2)) th...

    Text Solution

    |

  17. If f(x) = Sigma(r=1)^(n) [cos (2 r-1) x+ I sin ( 2r -1) x] then...

    Text Solution

    |

  18. if x= f (t) cos t- f'(t) sin t and y= f (t) sin t + f'(t ) cos...

    Text Solution

    |

  19. If x = sec theta - cos theta and y= sec^n theta - cos^n ...

    Text Solution

    |

  20. If x = cos^(-1) "" (1)/(sqrt"" (t^2 +1)). Y= sin^(-1)"" (t )/(sqrt""(...

    Text Solution

    |