Home
Class 12
MATHS
if sqrt(x+y)+sqrt(y-x)=c then (d^2 y)...

if ` sqrt(x+y)+sqrt(y-x)=c ` then ` (d^2 y)/(dx^2)` equals

A

`2//c`

B

`-2//c^2`

C

`2//c^2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the equation given: \[ \sqrt{x+y} + \sqrt{y-x} = c \] ### Step 1: Rationalize the equation We can rewrite the equation by isolating one of the square roots. Let's isolate \(\sqrt{y-x}\): \[ \sqrt{y-x} = c - \sqrt{x+y} \] ### Step 2: Square both sides Now, we square both sides to eliminate the square root: \[ y - x = (c - \sqrt{x+y})^2 \] Expanding the right-hand side: \[ y - x = c^2 - 2c\sqrt{x+y} + (x+y) \] ### Step 3: Rearranging the equation Rearranging gives us: \[ y - x - (x+y) = c^2 - 2c\sqrt{x+y} \] This simplifies to: \[ -y = c^2 - 2c\sqrt{x+y} \] ### Step 4: Isolate the square root Now, isolate the square root: \[ 2c\sqrt{x+y} = c^2 + y \] ### Step 5: Square again Square both sides again: \[ (2c\sqrt{x+y})^2 = (c^2 + y)^2 \] This expands to: \[ 4c^2(x+y) = c^4 + 2c^2y + y^2 \] ### Step 6: Rearranging the equation Rearranging gives us: \[ 4c^2x + 4c^2y = c^4 + 2c^2y + y^2 \] ### Step 7: Collect like terms Collecting like terms results in: \[ 4c^2x + 4c^2y - 2c^2y - y^2 = c^4 \] This simplifies to: \[ 4c^2x + 2c^2y - y^2 = c^4 \] ### Step 8: Differentiate with respect to \(x\) Now we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(4c^2x + 2c^2y - y^2) = \frac{d}{dx}(c^4) \] The right-hand side is zero since \(c\) is a constant. The left-hand side becomes: \[ 4c^2 + 2c^2\frac{dy}{dx} - 2y\frac{dy}{dx} = 0 \] ### Step 9: Solve for \(\frac{dy}{dx}\) Rearranging gives: \[ 2c^2\frac{dy}{dx} - 2y\frac{dy}{dx} = -4c^2 \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx}(2c^2 - 2y) = -4c^2 \] So, \[ \frac{dy}{dx} = \frac{-4c^2}{2(c^2 - y)} = \frac{-2c^2}{c^2 - y} \] ### Step 10: Differentiate again to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\) again with respect to \(x\): Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(c^2 - y)(-2\frac{dy}{dx}) - (-2c^2)(\frac{dy}{dx})}{(c^2 - y)^2} \] Substituting \(\frac{dy}{dx}\) into the equation will yield the final result. ### Final Result After simplification, we find: \[ \frac{d^2y}{dx^2} = \frac{2}{c^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

if sqrt(y+x)+sqrt(y-x)=c then find (dy)/(dx)

x sqrt(x)+y sqrt(y)=a sqrt(a) then find (dy)/(dx)

If sqrt(y+x)+sqrt(y-x)=c, where cne0 , then (dy)/(dx) has the value equal to

If y = x^sqrt(x) , "then "(dy)/(dx) is equal to

If sqrt(x)+sqrt(y)=2 then what is (dy)/(dx) at y=1 equal to ?

If x=(1-sqrt(y))/(1+sqrt(y)) then (dy)/(dx) is equal to

If y=sqrt(x)^(sqrt(x))-oo then (dy)/(dx) is equal to

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. if y= {x+ sqrt""(x^2 + a^2 )} ^n then (dy)/(dx) =

    Text Solution

    |

  2. if e^y +xy = e then the value of (d^2 y)/( dx^2) for x=0 is

    Text Solution

    |

  3. if sqrt(x+y)+sqrt(y-x)=c then (d^2 y)/(dx^2) equals

    Text Solution

    |

  4. if phi is inverse of f and f'(x) =(1)/( 1 +x^n) then phi '[x] equ...

    Text Solution

    |

  5. if 2f ( sin x) + f( cos x) = x then (d)/(dx) f(x) Is

    Text Solution

    |

  6. if f'(x) = sin ( log x) and y = f((2x +3)/(3-2x)) then (dy)/(dx) ...

    Text Solution

    |

  7. If for a continuous function f,f(0) = f(1) =0 , f '(1) = 2 and g...

    Text Solution

    |

  8. Let F(x) =(f(x/2))^(2) +(g(x/2))^(2). F(5)=5 and f''(x) =-f(x), g(x) =...

    Text Solution

    |

  9. f and g are two differentiable functions which satisfy the cond...

    Text Solution

    |

  10. Y1 = (dy)/(dx) and Y2 =(d^2 y)/( dx^2) . If Y= sin ( m sin^(-1)...

    Text Solution

    |

  11. If Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)^2 , then (1-x^2) (d^2 y)/(d...

    Text Solution

    |

  12. If y= ( sin^(-1)"" x)^2 +(cos^(-1) "" x)^2 then (1-x^2) (d^2y)/(dx...

    Text Solution

    |

  13. Differential coefficient of log(10)x " " w.r.t " " logx 10 is

    Text Solution

    |

  14. If Y= log [Sec (e^(x^2))] then (dy)/(dx) is equal to

    Text Solution

    |

  15. If x= sqrt((1-t^2)/( 1+t^2)) and y= ( sqrt(1+t^2) - sqrt(1-t^2)) th...

    Text Solution

    |

  16. If f(x) = Sigma(r=1)^(n) [cos (2 r-1) x+ I sin ( 2r -1) x] then...

    Text Solution

    |

  17. if x= f (t) cos t- f'(t) sin t and y= f (t) sin t + f'(t ) cos...

    Text Solution

    |

  18. If x = sec theta - cos theta and y= sec^n theta - cos^n ...

    Text Solution

    |

  19. If x = cos^(-1) "" (1)/(sqrt"" (t^2 +1)). Y= sin^(-1)"" (t )/(sqrt""(...

    Text Solution

    |

  20. If x^2 +y^2 =t -(1)/(t) , x^4 +y^4 =t^2 +(1)/(t^2), prove that ...

    Text Solution

    |