Home
Class 12
MATHS
Y1 = (dy)/(dx) and Y2 =(d^2 y)/( dx^2)...

`Y_1 = (dy)/(dx) and Y_2 =(d^2 y)/( dx^2)` . If ` Y= sin ( m sin^(-1)"" x)`, then `(1 -x^2) y_2 - xy_1 +m^2 y =`

A

1

B

`-1`

C

`0`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( (1 - x^2) y_2 - x y_1 + m^2 y \) where \( y = \sin(m \sin^{-1}(x)) \), \( y_1 = \frac{dy}{dx} \), and \( y_2 = \frac{d^2y}{dx^2} \). ### Step 1: Find \( y_1 \) Given: \[ y = \sin(m \sin^{-1}(x)) \] Using the chain rule: \[ y_1 = \frac{dy}{dx} = \cos(m \sin^{-1}(x)) \cdot \frac{d}{dx}(m \sin^{-1}(x)) \] Now, we know: \[ \frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1 - x^2}} \] Thus, \[ \frac{d}{dx}(m \sin^{-1}(x)) = m \cdot \frac{1}{\sqrt{1 - x^2}} \] So, \[ y_1 = \cos(m \sin^{-1}(x)) \cdot \frac{m}{\sqrt{1 - x^2}} \] ### Step 2: Find \( y_2 \) Now we differentiate \( y_1 \) to find \( y_2 \): \[ y_2 = \frac{d^2y}{dx^2} = \frac{d}{dx}\left( \cos(m \sin^{-1}(x)) \cdot \frac{m}{\sqrt{1 - x^2}} \right) \] Using the product rule: \[ y_2 = \left( \frac{d}{dx} \left( \cos(m \sin^{-1}(x)) \right) \cdot \frac{m}{\sqrt{1 - x^2}} \right) + \left( \cos(m \sin^{-1}(x)) \cdot \frac{d}{dx} \left( \frac{m}{\sqrt{1 - x^2}} \right) \right) \] For the first part, we differentiate \( \cos(m \sin^{-1}(x)) \): \[ \frac{d}{dx} \left( \cos(m \sin^{-1}(x)) \right) = -\sin(m \sin^{-1}(x)) \cdot \frac{m}{\sqrt{1 - x^2}} \] For the second part, we differentiate \( \frac{m}{\sqrt{1 - x^2}} \): \[ \frac{d}{dx} \left( \frac{m}{\sqrt{1 - x^2}} \right) = m \cdot \frac{x}{(1 - x^2)^{3/2}} \] Putting it all together: \[ y_2 = \left( -\sin(m \sin^{-1}(x)) \cdot \frac{m}{\sqrt{1 - x^2}} \cdot \frac{m}{\sqrt{1 - x^2}} \right) + \left( \cos(m \sin^{-1}(x)) \cdot \frac{mx}{(1 - x^2)^{3/2}} \right) \] ### Step 3: Substitute into the expression Now we substitute \( y_1 \) and \( y_2 \) into the expression \( (1 - x^2) y_2 - x y_1 + m^2 y \): \[ (1 - x^2) y_2 - x y_1 + m^2 y \] Substituting \( y_1 \) and \( y_2 \): 1. Calculate \( (1 - x^2) y_2 \) 2. Calculate \( -x y_1 \) 3. Add \( m^2 y \) After substituting and simplifying, we will find that the entire expression equals zero: \[ (1 - x^2) y_2 - x y_1 + m^2 y = 0 \] ### Final Result Thus, the final answer is: \[ (1 - x^2) y_2 - x y_1 + m^2 y = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=e^(m sin^(-1)x) then prove that (1-x^2) y_2 - xy_1 = m^2 y

If y=(sin^(-1)x)^2 , then prove that (1-x^2)y_2-xy_1=2

If y=cos(m sin^(-1)x), show that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0

If y=(sin^-1x)^2/2,then(1-x^2)y_2-xy_1 =

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If y=sin(m sin^(-1)x) , what is the value of d^(2)y//dx^(2) at x = 0?

If y=cos^(-1) (1-2 sin^(2) x),"then " dy/dx=

If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)=

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. if f'(x) = sin ( log x) and y = f((2x +3)/(3-2x)) then (dy)/(dx) ...

    Text Solution

    |

  2. If for a continuous function f,f(0) = f(1) =0 , f '(1) = 2 and g...

    Text Solution

    |

  3. Let F(x) =(f(x/2))^(2) +(g(x/2))^(2). F(5)=5 and f''(x) =-f(x), g(x) =...

    Text Solution

    |

  4. f and g are two differentiable functions which satisfy the cond...

    Text Solution

    |

  5. Y1 = (dy)/(dx) and Y2 =(d^2 y)/( dx^2) . If Y= sin ( m sin^(-1)...

    Text Solution

    |

  6. If Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)^2 , then (1-x^2) (d^2 y)/(d...

    Text Solution

    |

  7. If y= ( sin^(-1)"" x)^2 +(cos^(-1) "" x)^2 then (1-x^2) (d^2y)/(dx...

    Text Solution

    |

  8. Differential coefficient of log(10)x " " w.r.t " " logx 10 is

    Text Solution

    |

  9. If Y= log [Sec (e^(x^2))] then (dy)/(dx) is equal to

    Text Solution

    |

  10. If x= sqrt((1-t^2)/( 1+t^2)) and y= ( sqrt(1+t^2) - sqrt(1-t^2)) th...

    Text Solution

    |

  11. If f(x) = Sigma(r=1)^(n) [cos (2 r-1) x+ I sin ( 2r -1) x] then...

    Text Solution

    |

  12. if x= f (t) cos t- f'(t) sin t and y= f (t) sin t + f'(t ) cos...

    Text Solution

    |

  13. If x = sec theta - cos theta and y= sec^n theta - cos^n ...

    Text Solution

    |

  14. If x = cos^(-1) "" (1)/(sqrt"" (t^2 +1)). Y= sin^(-1)"" (t )/(sqrt""(...

    Text Solution

    |

  15. If x^2 +y^2 =t -(1)/(t) , x^4 +y^4 =t^2 +(1)/(t^2), prove that ...

    Text Solution

    |

  16. If phi (x) = f(x) g(x) , where f'(x) g'(x) =c then (phi ' ' )/(ph...

    Text Solution

    |

  17. If y= log(10) x + logx 10 + logx x- log (10) 10 , then (dy)/(dx) ...

    Text Solution

    |

  18. If x= (3 a t)/( 1+t^3), y =(3 at^2)/(1 +t^3) then (dy)/(dx) =…..

    Text Solution

    |

  19. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  20. If xe^(xy)= y+ sin^2 x then at x=0 , ( dy)/(dx) =. . . .

    Text Solution

    |