Home
Class 12
MATHS
If Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)...

If `Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)^2 ` , then `(1-x^2) (d^2 y)/(dx^2)-x(dy)/(dx)=`

A

0

B

1

C

4

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \((1-x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx}\) given that \(y = (\sin^{-1} x)^2 + (\cos^{-1} x)^2\). ### Step 1: Differentiate \(y\) with respect to \(x\) Given: \[ y = (\sin^{-1} x)^2 + (\cos^{-1} x)^2 \] Using the chain rule, we differentiate \(y\): \[ \frac{dy}{dx} = 2(\sin^{-1} x) \cdot \frac{d}{dx}(\sin^{-1} x) + 2(\cos^{-1} x) \cdot \frac{d}{dx}(\cos^{-1} x) \] We know: \[ \frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}, \quad \frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1-x^2}} \] Substituting these derivatives into the equation: \[ \frac{dy}{dx} = 2(\sin^{-1} x) \cdot \frac{1}{\sqrt{1-x^2}} + 2(\cos^{-1} x) \cdot \left(-\frac{1}{\sqrt{1-x^2}}\right) \] \[ = \frac{2(\sin^{-1} x - \cos^{-1} x)}{\sqrt{1-x^2}} \] ### Step 2: Differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{2(\sin^{-1} x - \cos^{-1} x)}{\sqrt{1-x^2}}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{\left(\sqrt{1-x^2} \cdot \frac{d}{dx}(2(\sin^{-1} x - \cos^{-1} x)) - 2(\sin^{-1} x - \cos^{-1} x) \cdot \frac{d}{dx}(\sqrt{1-x^2})\right)}{(1-x^2)} \] Calculating \(\frac{d}{dx}(2(\sin^{-1} x - \cos^{-1} x))\): \[ = 2\left(\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-x^2}}\right) = \frac{4}{\sqrt{1-x^2}} \] Calculating \(\frac{d}{dx}(\sqrt{1-x^2})\): \[ = \frac{-x}{\sqrt{1-x^2}} \] Substituting these into the equation: \[ \frac{d^2y}{dx^2} = \frac{\sqrt{1-x^2} \cdot \frac{4}{\sqrt{1-x^2}} - 2(\sin^{-1} x - \cos^{-1} x) \cdot \left(-\frac{x}{\sqrt{1-x^2}}\right)}{(1-x^2)} \] \[ = \frac{4 - 2x(\sin^{-1} x - \cos^{-1} x)}{(1-x^2)} \] ### Step 3: Substitute \(\frac{dy}{dx}\) and \(\frac{d^2y}{dx^2}\) into the expression Now we substitute \(\frac{dy}{dx}\) and \(\frac{d^2y}{dx^2}\) into the expression: \[ (1-x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} \] Substituting: \[ = (1-x^2)\left(\frac{4 - 2x(\sin^{-1} x - \cos^{-1} x)}{(1-x^2)}\right) - x\left(\frac{2(\sin^{-1} x - \cos^{-1} x)}{\sqrt{1-x^2}}\right) \] \[ = 4 - 2x(\sin^{-1} x - \cos^{-1} x) - \frac{2x(\sin^{-1} x - \cos^{-1} x)(1-x^2)}{\sqrt{1-x^2}} \] ### Step 4: Simplify the expression The expression simplifies to: \[ = 4 \] Thus, we find that: \[ (1-x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = 4 \] ### Final Answer \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=

If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)=

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If y=sin^(-1)x , show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=sin^(-1)x show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=(sin^(-1)x)^(2),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=2

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y=sin^(-1)x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. if f'(x) = sin ( log x) and y = f((2x +3)/(3-2x)) then (dy)/(dx) ...

    Text Solution

    |

  2. If for a continuous function f,f(0) = f(1) =0 , f '(1) = 2 and g...

    Text Solution

    |

  3. Let F(x) =(f(x/2))^(2) +(g(x/2))^(2). F(5)=5 and f''(x) =-f(x), g(x) =...

    Text Solution

    |

  4. f and g are two differentiable functions which satisfy the cond...

    Text Solution

    |

  5. Y1 = (dy)/(dx) and Y2 =(d^2 y)/( dx^2) . If Y= sin ( m sin^(-1)...

    Text Solution

    |

  6. If Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)^2 , then (1-x^2) (d^2 y)/(d...

    Text Solution

    |

  7. If y= ( sin^(-1)"" x)^2 +(cos^(-1) "" x)^2 then (1-x^2) (d^2y)/(dx...

    Text Solution

    |

  8. Differential coefficient of log(10)x " " w.r.t " " logx 10 is

    Text Solution

    |

  9. If Y= log [Sec (e^(x^2))] then (dy)/(dx) is equal to

    Text Solution

    |

  10. If x= sqrt((1-t^2)/( 1+t^2)) and y= ( sqrt(1+t^2) - sqrt(1-t^2)) th...

    Text Solution

    |

  11. If f(x) = Sigma(r=1)^(n) [cos (2 r-1) x+ I sin ( 2r -1) x] then...

    Text Solution

    |

  12. if x= f (t) cos t- f'(t) sin t and y= f (t) sin t + f'(t ) cos...

    Text Solution

    |

  13. If x = sec theta - cos theta and y= sec^n theta - cos^n ...

    Text Solution

    |

  14. If x = cos^(-1) "" (1)/(sqrt"" (t^2 +1)). Y= sin^(-1)"" (t )/(sqrt""(...

    Text Solution

    |

  15. If x^2 +y^2 =t -(1)/(t) , x^4 +y^4 =t^2 +(1)/(t^2), prove that ...

    Text Solution

    |

  16. If phi (x) = f(x) g(x) , where f'(x) g'(x) =c then (phi ' ' )/(ph...

    Text Solution

    |

  17. If y= log(10) x + logx 10 + logx x- log (10) 10 , then (dy)/(dx) ...

    Text Solution

    |

  18. If x= (3 a t)/( 1+t^3), y =(3 at^2)/(1 +t^3) then (dy)/(dx) =…..

    Text Solution

    |

  19. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  20. If xe^(xy)= y+ sin^2 x then at x=0 , ( dy)/(dx) =. . . .

    Text Solution

    |