Home
Class 12
MATHS
Differential coefficient of log(10)x " ...

Differential coefficient of `log_(10)x "
" w.r.t "
" log_x 10 ` is

A

`-((log x)^2)/((log 10)^2)`

B

`((log_(10)x)^2)/( (log 10)^2)`

C

`(log_x 10)/( log 10)`

D

`-((log 10)^2)/((log x)^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of \( \log_{10} x \) with respect to \( \log_x 10 \), we will follow these steps: ### Step 1: Define the Functions Let: - \( y = \log_{10} x \) - \( z = \log_x 10 \) ### Step 2: Use the Change of Base Formula Using the change of base formula for logarithms, we can express \( y \) and \( z \) as: \[ y = \frac{\log_e x}{\log_e 10} \] \[ z = \frac{\log_e 10}{\log_e x} \] ### Step 3: Differentiate \( y \) with respect to \( x \) To find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\log_e 10} \cdot \frac{d}{dx} (\log_e x) = \frac{1}{\log_e 10} \cdot \frac{1}{x} \] Thus, \[ \frac{dy}{dx} = \frac{1}{x \log_e 10} \] ### Step 4: Differentiate \( z \) with respect to \( x \) To find \( \frac{dz}{dx} \): \[ \frac{dz}{dx} = \frac{d}{dx} \left( \frac{\log_e 10}{\log_e x} \right) \] Using the quotient rule: \[ \frac{dz}{dx} = \frac{0 \cdot \log_e x - \log_e 10 \cdot \frac{1}{x}}{(\log_e x)^2} = -\frac{\log_e 10}{x (\log_e x)^2} \] ### Step 5: Use the Chain Rule to Find \( \frac{dy}{dz} \) Now, we can find \( \frac{dy}{dz} \) using the formula: \[ \frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} \] Substituting the values we found: \[ \frac{dy}{dz} = \frac{\frac{1}{x \log_e 10}}{-\frac{\log_e 10}{x (\log_e x)^2}} \] ### Step 6: Simplify the Expression Simplifying the expression: \[ \frac{dy}{dz} = \frac{1}{x \log_e 10} \cdot \left(-\frac{x (\log_e x)^2}{\log_e 10}\right) \] The \( x \) cancels out: \[ \frac{dy}{dz} = -\frac{(\log_e x)^2}{(\log_e 10)^2} \] ### Final Result Thus, the differential coefficient of \( \log_{10} x \) with respect to \( \log_x 10 \) is: \[ \frac{dy}{dz} = -\frac{(\log_e x)^2}{(\log_e 10)^2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

Differential coefficient of log _(10)xw.r.t log_(x)10 is

Differential coefficient of sec(tan^(-1)x) w.r.t x is

Knowledge Check

  • The dIfferential coefficient of log_10 x with respect to log_x 10 is

    A
    `-(log_10 x)^2`
    B
    `x^2/100`
    C
    1
    D
    `(log_e 10)^2`
  • Differentiate the following w.r.t.x. The differentiation coneffiecient of f(log_(e)x)w.r.t.x, where f(x)=log_(e)x, is

    A
    `(x)/(log_(e)x)`
    B
    `(1)/(x)log_(e)x`
    C
    `(1)/(xlog_(e)x)`
    D
    None of these
  • The differential coefficient of a^(log10" cosec"^(-1)x) , is

    A
    `(a^(log10("cosec"^(-1)x)))/("cosec"^(-1)x)(1)/(xsqrt(x^(2)-1))log_(10)a`
    B
    `-(a^(log10("cosec"^(-1)x)))/("cosec"^(-1)x).(1)/(|x|sqrt(x^(2)-1))log_(10)a`
    C
    `(-a^(log10("cosec"^(-1)x)))/("cosec"^(-1)x).(1)/(|x|sqrt(x^(2)-1))log_(a)10`
    D
    `(a^(log10"cosec"^(-1)x))/("cosec"^(-1)x).(1)/(xsqrt(x^(2)-1))log_(a)10`
  • Similar Questions

    Explore conceptually related problems

    Differential coefficient of log_2(log_2x )w.r.t x is______

    differential coefficient of (log x+log x^(2))/(x) wrt x

    The differential coefficient of f(log_(e)x)w*r.t.x, where f(x)=log_(e)x, is (i) (x)/(ln x)( ii) (ln x)/(x)( iii) (1)/(x ln x)( iv )x ln x

    The differential coefficient of 2^x w.r.t. x^2 is______.

    Differentiate w.r.t. as indicated : log_(10)x" w.r.t. "x^(2)