Home
Class 12
MATHS
if x= f (t) cos t- f'(t) sin t and ...

if ` x= f (t) cos t- f'(t) sin t and y= f (t) sin t + f'(t ) cos t, then ((dx)/(dt))^2 +((dy)/(dt))^2`=

A

`f-f''`

B

` (f-f' ' )^2`

C

`(f+f' ' )^2`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \(\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2\) given: \[ x = f(t) \cos t - f'(t) \sin t \] \[ y = f(t) \sin t + f'(t) \cos t \] ### Step 1: Differentiate \(x\) with respect to \(t\) Using the product rule for differentiation, we differentiate \(x\): \[ \frac{dx}{dt} = \frac{d}{dt}[f(t) \cos t] - \frac{d}{dt}[f'(t) \sin t] \] Applying the product rule: 1. For \(f(t) \cos t\): \[ \frac{d}{dt}[f(t) \cos t] = f'(t) \cos t - f(t) \sin t \] 2. For \(f'(t) \sin t\): \[ \frac{d}{dt}[f'(t) \sin t] = f''(t) \sin t + f'(t) \cos t \] Combining these results, we have: \[ \frac{dx}{dt} = (f'(t) \cos t - f(t) \sin t) - (f''(t) \sin t + f'(t) \cos t) \] Simplifying: \[ \frac{dx}{dt} = -f(t) \sin t - f''(t) \sin t \] Factoring out \(\sin t\): \[ \frac{dx}{dt} = -\sin t (f(t) + f''(t)) \] ### Step 2: Differentiate \(y\) with respect to \(t\) Now, we differentiate \(y\): \[ \frac{dy}{dt} = \frac{d}{dt}[f(t) \sin t] + \frac{d}{dt}[f'(t) \cos t] \] Applying the product rule: 1. For \(f(t) \sin t\): \[ \frac{d}{dt}[f(t) \sin t] = f'(t) \sin t + f(t) \cos t \] 2. For \(f'(t) \cos t\): \[ \frac{d}{dt}[f'(t) \cos t] = f''(t) \cos t - f'(t) \sin t \] Combining these results, we have: \[ \frac{dy}{dt} = (f'(t) \sin t + f(t) \cos t) + (f''(t) \cos t - f'(t) \sin t) \] Simplifying: \[ \frac{dy}{dt} = f(t) \cos t + f''(t) \cos t \] Factoring out \(\cos t\): \[ \frac{dy}{dt} = \cos t (f(t) + f''(t)) \] ### Step 3: Calculate \(\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2\) Now, we calculate: \[ \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 \] Substituting the expressions we found: \[ \left(-\sin t (f(t) + f''(t))\right)^2 + \left(\cos t (f(t) + f''(t))\right)^2 \] This simplifies to: \[ \sin^2 t (f(t) + f''(t))^2 + \cos^2 t (f(t) + f''(t))^2 \] Factoring out \((f(t) + f''(t))^2\): \[ = (f(t) + f''(t))^2 (\sin^2 t + \cos^2 t) \] Using the Pythagorean identity \(\sin^2 t + \cos^2 t = 1\): \[ = (f(t) + f''(t))^2 \] ### Final Result Thus, we conclude: \[ \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = (f(t) + f''(t))^2 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x=f(t)cost-f^(prime)(t)sint and y=f(t)sint+f^(prime)(t)cost , then ((dx)/(dt))^2+((dy)/(dt))^2= (a) f(t)-f^(primeprime)(t) (b) {f(t)-f^(primeprime)(t)}^2 (c) {f(t)+f^(primeprime)(t)}^2 (d) none of these

If =f''(t)cos t+f'(t)sin t,y=-f''(t)sin t+f'(t)cos t, then int[((dx)/(dt))^(2)+((dy)/(dt))^(2)]^((1)/(2))dt is equal to

If x= f(t )cost-f^(prime)(t)sinta n dy=f(t)sint+f^(prime)(t)cost ,t h e n((dx)/(dt))^2+((dy)/(dt))^2 (a) f(t)-f^(primeprime)(t) (b) {f(t)-f^(primeprime)(t)}^2 (c) {f(t)+f^(primeprime)(t)}^2 (d) none of these

If x = a (cos t + t sin t), y = a (sin t - t cos t), then at t = pi//4,(dy)/(dx)

If x=a(t-sin t) and y=a(1+cos t) then (dy)/(dx)=

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find (d^(2)y)/(dx^(2))

If x=sin t-t cos t and y = t sin t +cos t, then what is (dy)/(dx) at point t=(pi)/(2)?

x = a (cos t + sin t), y = a (sin t-cos t)

If y=sin t -cos t and x=sin t+cost , then (dy)/(dx) at t=(pi)/(6) is :

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. if f'(x) = sin ( log x) and y = f((2x +3)/(3-2x)) then (dy)/(dx) ...

    Text Solution

    |

  2. If for a continuous function f,f(0) = f(1) =0 , f '(1) = 2 and g...

    Text Solution

    |

  3. Let F(x) =(f(x/2))^(2) +(g(x/2))^(2). F(5)=5 and f''(x) =-f(x), g(x) =...

    Text Solution

    |

  4. f and g are two differentiable functions which satisfy the cond...

    Text Solution

    |

  5. Y1 = (dy)/(dx) and Y2 =(d^2 y)/( dx^2) . If Y= sin ( m sin^(-1)...

    Text Solution

    |

  6. If Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)^2 , then (1-x^2) (d^2 y)/(d...

    Text Solution

    |

  7. If y= ( sin^(-1)"" x)^2 +(cos^(-1) "" x)^2 then (1-x^2) (d^2y)/(dx...

    Text Solution

    |

  8. Differential coefficient of log(10)x " " w.r.t " " logx 10 is

    Text Solution

    |

  9. If Y= log [Sec (e^(x^2))] then (dy)/(dx) is equal to

    Text Solution

    |

  10. If x= sqrt((1-t^2)/( 1+t^2)) and y= ( sqrt(1+t^2) - sqrt(1-t^2)) th...

    Text Solution

    |

  11. If f(x) = Sigma(r=1)^(n) [cos (2 r-1) x+ I sin ( 2r -1) x] then...

    Text Solution

    |

  12. if x= f (t) cos t- f'(t) sin t and y= f (t) sin t + f'(t ) cos...

    Text Solution

    |

  13. If x = sec theta - cos theta and y= sec^n theta - cos^n ...

    Text Solution

    |

  14. If x = cos^(-1) "" (1)/(sqrt"" (t^2 +1)). Y= sin^(-1)"" (t )/(sqrt""(...

    Text Solution

    |

  15. If x^2 +y^2 =t -(1)/(t) , x^4 +y^4 =t^2 +(1)/(t^2), prove that ...

    Text Solution

    |

  16. If phi (x) = f(x) g(x) , where f'(x) g'(x) =c then (phi ' ' )/(ph...

    Text Solution

    |

  17. If y= log(10) x + logx 10 + logx x- log (10) 10 , then (dy)/(dx) ...

    Text Solution

    |

  18. If x= (3 a t)/( 1+t^3), y =(3 at^2)/(1 +t^3) then (dy)/(dx) =…..

    Text Solution

    |

  19. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  20. If xe^(xy)= y+ sin^2 x then at x=0 , ( dy)/(dx) =. . . .

    Text Solution

    |