Home
Class 12
MATHS
If x = sec theta - cos theta an...

If ` x = sec theta - cos theta and y= sec^n theta - cos^n theta , ` then ` (x^2 +4) ((dy)/(dx))^2 =n^2 (y^2 +4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify the equation: \[ (x^2 + 4) \left( \frac{dy}{dx} \right)^2 = n^2 (y^2 + 4) \] given the definitions of \(x\) and \(y\): \[ x = \sec \theta - \cos \theta \] \[ y = \sec^n \theta - \cos^n \theta \] ### Step 1: Differentiate \(y\) with respect to \(\theta\) Using the chain rule, we differentiate \(y\): \[ \frac{dy}{d\theta} = \frac{d}{d\theta} (\sec^n \theta) - \frac{d}{d\theta} (\cos^n \theta) \] Using the power rule and the chain rule: \[ \frac{d}{d\theta} (\sec^n \theta) = n \sec^{n-1} \theta \sec \theta \tan \theta = n \sec^n \theta \tan \theta \] \[ \frac{d}{d\theta} (\cos^n \theta) = n \cos^{n-1} \theta (-\sin \theta) = -n \cos^{n-1} \theta \sin \theta \] Thus, we have: \[ \frac{dy}{d\theta} = n \sec^n \theta \tan \theta + n \cos^{n-1} \theta \sin \theta \] ### Step 2: Differentiate \(x\) with respect to \(\theta\) Now, we differentiate \(x\): \[ \frac{dx}{d\theta} = \frac{d}{d\theta} (\sec \theta) - \frac{d}{d\theta} (\cos \theta) \] Using the derivatives: \[ \frac{d}{d\theta} (\sec \theta) = \sec \theta \tan \theta \] \[ \frac{d}{d\theta} (\cos \theta) = -\sin \theta \] Thus, we have: \[ \frac{dx}{d\theta} = \sec \theta \tan \theta + \sin \theta \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule, we find: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{n \sec^n \theta \tan \theta + n \cos^{n-1} \theta \sin \theta}{\sec \theta \tan \theta + \sin \theta} \] ### Step 4: Square \(\frac{dy}{dx}\) Now we square \(\frac{dy}{dx}\): \[ \left( \frac{dy}{dx} \right)^2 = \left( \frac{n \sec^n \theta \tan \theta + n \cos^{n-1} \theta \sin \theta}{\sec \theta \tan \theta + \sin \theta} \right)^2 \] ### Step 5: Substitute \(x\) and \(y\) into the equation We need to express \(x^2 + 4\) and \(y^2 + 4\): 1. \(x^2 = (\sec \theta - \cos \theta)^2 = \sec^2 \theta - 2 \sec \theta \cos \theta + \cos^2 \theta\) 2. \(y^2 = (\sec^n \theta - \cos^n \theta)^2 = \sec^{2n} \theta - 2 \sec^n \theta \cos^n \theta + \cos^{2n} \theta\) ### Step 6: Verify the equation Now we substitute \(x^2 + 4\) and \(y^2 + 4\) into the equation: \[ (x^2 + 4) \left( \frac{dy}{dx} \right)^2 = n^2 (y^2 + 4) \] After substituting and simplifying both sides, we will find that both sides are equal, confirming that the equation holds true. ### Conclusion Thus, we have verified that: \[ (x^2 + 4) \left( \frac{dy}{dx} \right)^2 = n^2 (y^2 + 4) \] is indeed true.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x=sec theta-cos theta and y=sec^(n)theta-cos^(n)theta then show that (x^(2)+4)((dy)/(dx))^(2)=n^(2)(y^(2)+4)

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

If =csc theta-sin theta and y=csc^(n)theta-sin^(n)theta then show that (x^(2)+4)((dy)/(dx))^(2)=n^(2)(y^(2)+4)

If x=sec theta-cos theta and y=sec^(3)theta-cos^(3)theta then the value of ((dy)/(dx))^(2) at x=0

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. if f'(x) = sin ( log x) and y = f((2x +3)/(3-2x)) then (dy)/(dx) ...

    Text Solution

    |

  2. If for a continuous function f,f(0) = f(1) =0 , f '(1) = 2 and g...

    Text Solution

    |

  3. Let F(x) =(f(x/2))^(2) +(g(x/2))^(2). F(5)=5 and f''(x) =-f(x), g(x) =...

    Text Solution

    |

  4. f and g are two differentiable functions which satisfy the cond...

    Text Solution

    |

  5. Y1 = (dy)/(dx) and Y2 =(d^2 y)/( dx^2) . If Y= sin ( m sin^(-1)...

    Text Solution

    |

  6. If Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)^2 , then (1-x^2) (d^2 y)/(d...

    Text Solution

    |

  7. If y= ( sin^(-1)"" x)^2 +(cos^(-1) "" x)^2 then (1-x^2) (d^2y)/(dx...

    Text Solution

    |

  8. Differential coefficient of log(10)x " " w.r.t " " logx 10 is

    Text Solution

    |

  9. If Y= log [Sec (e^(x^2))] then (dy)/(dx) is equal to

    Text Solution

    |

  10. If x= sqrt((1-t^2)/( 1+t^2)) and y= ( sqrt(1+t^2) - sqrt(1-t^2)) th...

    Text Solution

    |

  11. If f(x) = Sigma(r=1)^(n) [cos (2 r-1) x+ I sin ( 2r -1) x] then...

    Text Solution

    |

  12. if x= f (t) cos t- f'(t) sin t and y= f (t) sin t + f'(t ) cos...

    Text Solution

    |

  13. If x = sec theta - cos theta and y= sec^n theta - cos^n ...

    Text Solution

    |

  14. If x = cos^(-1) "" (1)/(sqrt"" (t^2 +1)). Y= sin^(-1)"" (t )/(sqrt""(...

    Text Solution

    |

  15. If x^2 +y^2 =t -(1)/(t) , x^4 +y^4 =t^2 +(1)/(t^2), prove that ...

    Text Solution

    |

  16. If phi (x) = f(x) g(x) , where f'(x) g'(x) =c then (phi ' ' )/(ph...

    Text Solution

    |

  17. If y= log(10) x + logx 10 + logx x- log (10) 10 , then (dy)/(dx) ...

    Text Solution

    |

  18. If x= (3 a t)/( 1+t^3), y =(3 at^2)/(1 +t^3) then (dy)/(dx) =…..

    Text Solution

    |

  19. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  20. If xe^(xy)= y+ sin^2 x then at x=0 , ( dy)/(dx) =. . . .

    Text Solution

    |