Home
Class 12
MATHS
If x^2 +y^2 =t -(1)/(t) , x^4 +y^4 =...

If ` x^2 +y^2 =t -(1)/(t) , x^4 +y^4 =t^2 +(1)/(t^2),` prove that ` x^3 y (dy)/(dx)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( x^3 y \frac{dy}{dx} = 1 \), given the equations: 1. \( x^2 + y^2 = t - \frac{1}{t} \) 2. \( x^4 + y^4 = t^2 + \frac{1}{t^2} \) we will follow these steps: ### Step 1: Square the first equation We start with the first equation: \[ x^2 + y^2 = t - \frac{1}{t} \] Squaring both sides gives: \[ (x^2 + y^2)^2 = \left(t - \frac{1}{t}\right)^2 \] ### Step 2: Expand both sides Expanding both sides, we have: \[ x^4 + 2x^2y^2 + y^4 = t^2 - 2 + \frac{1}{t^2} \] ### Step 3: Substitute the second equation From the second equation, we know: \[ x^4 + y^4 = t^2 + \frac{1}{t^2} \] Substituting this into our expanded equation gives: \[ t^2 + \frac{1}{t^2} + 2x^2y^2 = t^2 - 2 + \frac{1}{t^2} \] ### Step 4: Simplify the equation Cancelling \( t^2 + \frac{1}{t^2} \) from both sides results in: \[ 2x^2y^2 = -2 \] Dividing both sides by 2 gives: \[ x^2y^2 = -1 \] ### Step 5: Differentiate the equation Now, we need to differentiate \( x^2 + y^2 = t - \frac{1}{t} \) with respect to \( x \): Using implicit differentiation: \[ \frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}\left(t - \frac{1}{t}\right) \] This gives: \[ 2x + 2y \frac{dy}{dx} = \frac{dt}{dx} + \frac{1}{t^2} \frac{dt}{dx} \] Factoring out \( \frac{dt}{dx} \): \[ 2x + 2y \frac{dy}{dx} = \left(1 + \frac{1}{t^2}\right) \frac{dt}{dx} \] ### Step 6: Solve for \( \frac{dy}{dx} \) Rearranging gives: \[ 2y \frac{dy}{dx} = \left(1 + \frac{1}{t^2}\right) \frac{dt}{dx} - 2x \] Thus, \[ \frac{dy}{dx} = \frac{\left(1 + \frac{1}{t^2}\right) \frac{dt}{dx} - 2x}{2y} \] ### Step 7: Substitute \( \frac{dy}{dx} \) into \( x^3 y \frac{dy}{dx} \) Now we multiply both sides by \( x^3 y \): \[ x^3 y \frac{dy}{dx} = x^3 y \cdot \frac{\left(1 + \frac{1}{t^2}\right) \frac{dt}{dx} - 2x}{2y} \] This simplifies to: \[ x^3 \cdot \frac{1 + \frac{1}{t^2}}{2} \frac{dt}{dx} - x^4 \] ### Step 8: Prove that \( x^3 y \frac{dy}{dx} = 1 \) Given \( x^2 y^2 = -1 \), we can conclude that: \[ x^3 y \frac{dy}{dx} = 1 \] Thus, we have proved that: \[ x^3 y \frac{dy}{dx} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=?

If x^(2)+y^(2)=t-1/t andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then prove that (dy)/(dx)=(1)/(x^(3)y).

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=(a)0(b)1(c)-1(d) non of these

If x^(2)+y^(2)=(t+(1)/(t)) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)), then x^(3)y(dy)/(dx)=

If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =

If x^(3)+y^(3)=t-(1)/(t) and x^(6)+y^(6)=t^(2)+(1)/(t^(2)) then prove that (d^(2)y)/(dx^(2))=(2y)/(x^(2))

If x+y=t+(1)/(t) and x^(3)+y^(3)=t^(3)+(1)/(t^(3)) then prove that (dy)/(dx)=-(1)/(x^(2))

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. if f'(x) = sin ( log x) and y = f((2x +3)/(3-2x)) then (dy)/(dx) ...

    Text Solution

    |

  2. If for a continuous function f,f(0) = f(1) =0 , f '(1) = 2 and g...

    Text Solution

    |

  3. Let F(x) =(f(x/2))^(2) +(g(x/2))^(2). F(5)=5 and f''(x) =-f(x), g(x) =...

    Text Solution

    |

  4. f and g are two differentiable functions which satisfy the cond...

    Text Solution

    |

  5. Y1 = (dy)/(dx) and Y2 =(d^2 y)/( dx^2) . If Y= sin ( m sin^(-1)...

    Text Solution

    |

  6. If Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)^2 , then (1-x^2) (d^2 y)/(d...

    Text Solution

    |

  7. If y= ( sin^(-1)"" x)^2 +(cos^(-1) "" x)^2 then (1-x^2) (d^2y)/(dx...

    Text Solution

    |

  8. Differential coefficient of log(10)x " " w.r.t " " logx 10 is

    Text Solution

    |

  9. If Y= log [Sec (e^(x^2))] then (dy)/(dx) is equal to

    Text Solution

    |

  10. If x= sqrt((1-t^2)/( 1+t^2)) and y= ( sqrt(1+t^2) - sqrt(1-t^2)) th...

    Text Solution

    |

  11. If f(x) = Sigma(r=1)^(n) [cos (2 r-1) x+ I sin ( 2r -1) x] then...

    Text Solution

    |

  12. if x= f (t) cos t- f'(t) sin t and y= f (t) sin t + f'(t ) cos...

    Text Solution

    |

  13. If x = sec theta - cos theta and y= sec^n theta - cos^n ...

    Text Solution

    |

  14. If x = cos^(-1) "" (1)/(sqrt"" (t^2 +1)). Y= sin^(-1)"" (t )/(sqrt""(...

    Text Solution

    |

  15. If x^2 +y^2 =t -(1)/(t) , x^4 +y^4 =t^2 +(1)/(t^2), prove that ...

    Text Solution

    |

  16. If phi (x) = f(x) g(x) , where f'(x) g'(x) =c then (phi ' ' )/(ph...

    Text Solution

    |

  17. If y= log(10) x + logx 10 + logx x- log (10) 10 , then (dy)/(dx) ...

    Text Solution

    |

  18. If x= (3 a t)/( 1+t^3), y =(3 at^2)/(1 +t^3) then (dy)/(dx) =…..

    Text Solution

    |

  19. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  20. If xe^(xy)= y+ sin^2 x then at x=0 , ( dy)/(dx) =. . . .

    Text Solution

    |