Home
Class 12
MATHS
If y= log(10) x + logx 10 + logx x- l...

If ` y= log_(10) x + log_x 10 + log_x x- log _(10) 10 `, then `(dy)/(dx) =….`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \log_{10} x + \log_x 10 + \log_x x - \log_{10} 10 \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Simplify the Expression for \( y \) Using the change of base formula, we can rewrite the logarithmic terms: - \( \log_{10} x = \frac{\log_e x}{\log_e 10} \) - \( \log_x 10 = \frac{\log_e 10}{\log_e x} \) - \( \log_x x = 1 \) (since the logarithm of a number to its own base is always 1) - \( \log_{10} 10 = 1 \) Substituting these into the equation for \( y \): \[ y = \frac{\log_e x}{\log_e 10} + \frac{\log_e 10}{\log_e x} + 1 - 1 \] This simplifies to: \[ y = \frac{\log_e x}{\log_e 10} + \frac{\log_e 10}{\log_e x} \] ### Step 2: Differentiate \( y \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}\left(\frac{\log_e x}{\log_e 10}\right) + \frac{d}{dx}\left(\frac{\log_e 10}{\log_e x}\right) \] The first term is a constant multiplied by \( \log_e x \): \[ \frac{d}{dx}\left(\frac{\log_e x}{\log_e 10}\right) = \frac{1}{\log_e 10} \cdot \frac{1}{x} \] For the second term, we apply the quotient rule: \[ \frac{d}{dx}\left(\frac{\log_e 10}{\log_e x}\right) = \log_e 10 \cdot \frac{d}{dx}\left(\frac{1}{\log_e x}\right) \] Using the chain rule: \[ \frac{d}{dx}\left(\frac{1}{\log_e x}\right) = -\frac{1}{(\log_e x)^2} \cdot \frac{1}{x} \] Thus, \[ \frac{d}{dx}\left(\frac{\log_e 10}{\log_e x}\right) = -\frac{\log_e 10}{(\log_e x)^2} \cdot \frac{1}{x} \] ### Step 3: Combine the Results Putting it all together: \[ \frac{dy}{dx} = \frac{1}{x \log_e 10} - \frac{\log_e 10}{x (\log_e x)^2} \] We can factor out \( \frac{1}{x} \): \[ \frac{dy}{dx} = \frac{1}{x} \left( \frac{1}{\log_e 10} - \frac{\log_e 10}{(\log_e x)^2} \right) \] ### Final Result Thus, the final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{x} \left( \frac{1}{\log_e 10} - \frac{\log_e 10}{(\log_e x)^2} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y = log_(10) x " then "(dy)/(dx) = ?

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

If y=log_10 x then find (dy)/(dx)

If y=log_(10)x+log_(x)10+log_(x)x+log_(10) 10 then what is ((dy)/(dx))_(x=10) equal to ?

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10 then what is ((dy)/(dx))_(x=10) equal to?

If y = log_(10) x , then the value of (dy)/(dx) is

log_(10){log10x}=1 then x

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10,"find "(dy)/(dx) .

If log_(10) x+log_(10) y= 3 and log_(10) x-log_(10) y=1, then x and y are respectively a. 10 and 100 b. 100 and 10 c. 1000 and 100 d. 100 and 1000

ML KHANNA-DIFFERENTIATION-PROBLEM SET-(2)
  1. if f'(x) = sin ( log x) and y = f((2x +3)/(3-2x)) then (dy)/(dx) ...

    Text Solution

    |

  2. If for a continuous function f,f(0) = f(1) =0 , f '(1) = 2 and g...

    Text Solution

    |

  3. Let F(x) =(f(x/2))^(2) +(g(x/2))^(2). F(5)=5 and f''(x) =-f(x), g(x) =...

    Text Solution

    |

  4. f and g are two differentiable functions which satisfy the cond...

    Text Solution

    |

  5. Y1 = (dy)/(dx) and Y2 =(d^2 y)/( dx^2) . If Y= sin ( m sin^(-1)...

    Text Solution

    |

  6. If Y = ( sin^(-1)"" x)^2 + (cos ^(-1) x)^2 , then (1-x^2) (d^2 y)/(d...

    Text Solution

    |

  7. If y= ( sin^(-1)"" x)^2 +(cos^(-1) "" x)^2 then (1-x^2) (d^2y)/(dx...

    Text Solution

    |

  8. Differential coefficient of log(10)x " " w.r.t " " logx 10 is

    Text Solution

    |

  9. If Y= log [Sec (e^(x^2))] then (dy)/(dx) is equal to

    Text Solution

    |

  10. If x= sqrt((1-t^2)/( 1+t^2)) and y= ( sqrt(1+t^2) - sqrt(1-t^2)) th...

    Text Solution

    |

  11. If f(x) = Sigma(r=1)^(n) [cos (2 r-1) x+ I sin ( 2r -1) x] then...

    Text Solution

    |

  12. if x= f (t) cos t- f'(t) sin t and y= f (t) sin t + f'(t ) cos...

    Text Solution

    |

  13. If x = sec theta - cos theta and y= sec^n theta - cos^n ...

    Text Solution

    |

  14. If x = cos^(-1) "" (1)/(sqrt"" (t^2 +1)). Y= sin^(-1)"" (t )/(sqrt""(...

    Text Solution

    |

  15. If x^2 +y^2 =t -(1)/(t) , x^4 +y^4 =t^2 +(1)/(t^2), prove that ...

    Text Solution

    |

  16. If phi (x) = f(x) g(x) , where f'(x) g'(x) =c then (phi ' ' )/(ph...

    Text Solution

    |

  17. If y= log(10) x + logx 10 + logx x- log (10) 10 , then (dy)/(dx) ...

    Text Solution

    |

  18. If x= (3 a t)/( 1+t^3), y =(3 at^2)/(1 +t^3) then (dy)/(dx) =…..

    Text Solution

    |

  19. If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))), then (dy)/(dx) is equal to

    Text Solution

    |

  20. If xe^(xy)= y+ sin^2 x then at x=0 , ( dy)/(dx) =. . . .

    Text Solution

    |