Home
Class 12
MATHS
If x^2 +y^2 = 1 then...

If ` x^2 +y^2 = 1 ` then

A

` y y' -2 (y')^2 +1 =0`

B

`y y '' +(y' )^2 +1 =0`

C

`Yy ' -(y ')^2 -1=0`

D

`y Y' +2 (y')^2 +1=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given the equation \( x^2 + y^2 = 1 \), we will differentiate it step by step to find the second derivative \( y'' \). ### Step-by-Step Solution 1. **Differentiate the equation with respect to \( x \)**: \[ \frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(1) \] This gives us: \[ 2x + 2y \frac{dy}{dx} = 0 \] 2. **Rearranging the equation**: Divide the entire equation by 2: \[ x + y \frac{dy}{dx} = 0 \] Now, isolate \( \frac{dy}{dx} \): \[ y \frac{dy}{dx} = -x \implies \frac{dy}{dx} = -\frac{x}{y} \] 3. **Differentiate again to find the second derivative**: Differentiate \( \frac{dy}{dx} = -\frac{x}{y} \) with respect to \( x \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{x}{y}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = -\frac{y \cdot \frac{d}{dx}(x) - x \cdot \frac{d}{dx}(y)}{y^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = -\frac{y \cdot 1 - x \cdot \frac{dy}{dx}}{y^2} \] 4. **Substituting \( \frac{dy}{dx} \)**: Substitute \( \frac{dy}{dx} = -\frac{x}{y} \): \[ \frac{d^2y}{dx^2} = -\frac{y + x \cdot \left(-\frac{x}{y}\right)}{y^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = -\frac{y + \frac{x^2}{y}}{y^2} \] Combine the terms in the numerator: \[ \frac{d^2y}{dx^2} = -\frac{y^2 + x^2}{y^3} \] 5. **Using the original equation**: From the original equation \( x^2 + y^2 = 1 \), we can substitute: \[ \frac{d^2y}{dx^2} = -\frac{1}{y^3} \] ### Final Result Thus, we have: \[ y'' = -\frac{1}{y^3} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x^(2) + y^(2) = 1 and x ne -1 then (1+y+ix)/(1+y-ix) equals

If x^(2) - y^(2) = 1, (x gt y) then find the value of log_(x-y) (x+y)

The co-ordinates of the vertices of x^(2) - y^(2) = 1 are

If 4x^(2)+y^(2)=1 then the maximum value of 12x^(2)-3y^(2)+16xy is

A circle C and the circle x^2 + y^2 =1 are orthogonal and have radical axis parallel to y-axis, then C can be : (A) x^2 + y^2 + 1 = 0 (B) x^2 + y^2 + 1 = y (C) x^2 + y^2 + 1 = -x (D) x^2 + y^2 - 1 = -x

From the sum of x^2 - y^2 - 1, y^2 - x^2 - 1 and 1 - x^2 - y^2 " subtract " - (1 + y^2) .

If x^2+y^2=1 and x != -1 then (1+y+ix)/(1+y-ix)=