Home
Class 12
MATHS
If sin (x + y) = log (x+y) , then dy...

If sin ` (x + y) = log (x+y) `, then ` dy //dx` =

A

2

B

`-2`

C

`1`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) given the equation \( \sin(x + y) = \log(x + y) \), we will differentiate both sides with respect to \( x \). ### Step-by-Step Solution: 1. **Differentiate both sides**: \[ \frac{d}{dx}[\sin(x + y)] = \frac{d}{dx}[\log(x + y)] \] 2. **Apply the chain rule on the left side**: - The derivative of \( \sin(u) \) is \( \cos(u) \cdot \frac{du}{dx} \), where \( u = x + y \). - Thus, we have: \[ \cos(x + y) \cdot \frac{d}{dx}(x + y) = \cos(x + y) \cdot (1 + \frac{dy}{dx}) \] 3. **Differentiate the right side**: - The derivative of \( \log(v) \) is \( \frac{1}{v} \cdot \frac{dv}{dx} \), where \( v = x + y \). - Thus, we have: \[ \frac{1}{x + y} \cdot \frac{d}{dx}(x + y) = \frac{1}{x + y} \cdot (1 + \frac{dy}{dx}) \] 4. **Set the derivatives equal**: \[ \cos(x + y) \cdot (1 + \frac{dy}{dx}) = \frac{1}{x + y} \cdot (1 + \frac{dy}{dx}) \] 5. **Rearrange the equation**: - Move all terms involving \( \frac{dy}{dx} \) to one side: \[ \cos(x + y) \cdot (1 + \frac{dy}{dx}) - \frac{1}{x + y} \cdot (1 + \frac{dy}{dx}) = 0 \] 6. **Factor out \( (1 + \frac{dy}{dx}) \)**: \[ (1 + \frac{dy}{dx}) \left( \cos(x + y) - \frac{1}{x + y} \right) = 0 \] 7. **Set each factor to zero**: - From \( 1 + \frac{dy}{dx} = 0 \): \[ \frac{dy}{dx} = -1 \] - The other factor \( \cos(x + y) - \frac{1}{x + y} = 0 \) does not give us a value for \( \frac{dy}{dx} \). ### Final Answer: \[ \frac{dy}{dx} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If log (x+y) =log (xy ) +a, then (dy)/(dx) =

If x= sin (log t ),y =log (sin t ) ,then (dy)/(dx)=

If y =log x^(x) ,then (dy)/(dx) =

If x^(2) +sin y =y^(2) +log )(x+y) ,then (dy)/(dx) =

If y = x^(log x) , then (dy)/(dx) equals

If y=log x^(x), then (dy)/(dx)=