Home
Class 12
MATHS
If f (x) =x^(1//x) , then f' ' (e ) ...

If `f (x) =x^(1//x) ,` then f' ' (e ) is equal to

A

` e^(1//e)`

B

`e^(1//e) -2`

C

` 2^(1//(e-3)`

D

`-e^((1//e-3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f''(e) \) for the function \( f(x) = x^{1/x} \), we will follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of \( f(x) \): \[ \ln(f(x)) = \ln(x^{1/x}) \] Using the logarithmic identity \( \ln(a^b) = b \ln(a) \), we can simplify the right-hand side: \[ \ln(f(x)) = \frac{1}{x} \ln(x) \] ### Step 2: Differentiate both sides Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\ln(f(x))) = \frac{d}{dx}\left(\frac{1}{x} \ln(x)\right) \] Using the chain rule on the left side, we have: \[ \frac{1}{f(x)} f'(x) = \frac{d}{dx}\left(\frac{1}{x} \ln(x)\right) \] For the right side, we apply the quotient rule: \[ \frac{d}{dx}\left(\frac{\ln(x)}{x}\right) = \frac{x \cdot \frac{1}{x} - \ln(x) \cdot 1}{x^2} = \frac{1 - \ln(x)}{x^2} \] Thus, we have: \[ \frac{1}{f(x)} f'(x) = \frac{1 - \ln(x)}{x^2} \] ### Step 3: Solve for \( f'(x) \) Multiplying both sides by \( f(x) \): \[ f'(x) = f(x) \cdot \frac{1 - \ln(x)}{x^2} \] Substituting \( f(x) = x^{1/x} \): \[ f'(x) = x^{1/x} \cdot \frac{1 - \ln(x)}{x^2} \] ### Step 4: Differentiate \( f'(x) \) to find \( f''(x) \) Now we differentiate \( f'(x) \): \[ f''(x) = \frac{d}{dx}\left(x^{1/x} \cdot \frac{1 - \ln(x)}{x^2}\right) \] Using the product rule: \[ f''(x) = \left( \frac{d}{dx}(x^{1/x}) \cdot \frac{1 - \ln(x)}{x^2} \right) + \left( x^{1/x} \cdot \frac{d}{dx}\left(\frac{1 - \ln(x)}{x^2}\right) \right) \] ### Step 5: Calculate \( f''(e) \) We need to evaluate \( f''(e) \). First, we find \( f(e) \): \[ f(e) = e^{1/e} \] Next, we substitute \( x = e \) into our expressions for \( f'(x) \) and \( f''(x) \). 1. Calculate \( f'(e) \): \[ f'(e) = e^{1/e} \cdot \frac{1 - \ln(e)}{e^2} = e^{1/e} \cdot \frac{1 - 1}{e^2} = 0 \] 2. Now, we need to differentiate \( f'(x) \) again and substitute \( x = e \) to find \( f''(e) \). This involves substituting \( e \) into our derived expression for \( f''(x) \). After performing the calculations, we find: \[ f''(e) = -e^{1/e} \cdot \frac{1}{e^4} \] This simplifies to: \[ f''(e) = -\frac{e^{1/e}}{e^4} = -e^{1/e - 4} \] ### Final Answer Thus, the value of \( f''(e) \) is: \[ f''(e) = -e^{1/e - 4} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x.e^(x(1-x), then f(x) is

If f(x) = e^(-x) , then (f (-a))/(f(b)) is equal to

If f(x)=x e^(x(1-x)) , then f(x) is

If f(x)=(log)_x(logx) , then f'(x) at x=e is equal to......

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x)=e^(x) , then the value of 7 f (x) will be equal to

If f(x) = 1/x , then f(a)/f(a + 1) is equal to

If f(x)=log_(x)(log_(e)x) , then f'(x) at x=e is equal to