Home
Class 12
MATHS
If y= (x^x )^x then (dy)/(dx) =...

If `y= (x^x )^x ` then `(dy)/(dx)` =

A

`xy (1 + log x)`

B

`XY (1+2 log x)`

C

` x/y (1 + log X)`

D

`(x)/(y ) (1+ 2 log x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (x^x)^x \), we can follow these steps: ### Step 1: Simplify the expression First, we simplify the expression \( y = (x^x)^x \) using the property of exponents: \[ y = x^{x \cdot x} = x^{x^2} \] ### Step 2: Take the natural logarithm Next, we take the natural logarithm of both sides to facilitate differentiation: \[ \ln y = \ln(x^{x^2}) \] ### Step 3: Apply the logarithmic property Using the property of logarithms that states \( \ln(a^b) = b \ln a \), we can rewrite the right side: \[ \ln y = x^2 \ln x \] ### Step 4: Differentiate both sides Now we differentiate both sides with respect to \( x \). Remember to use implicit differentiation on the left side: \[ \frac{d}{dx}(\ln y) = \frac{1}{y} \frac{dy}{dx} \] For the right side, we apply the product rule: \[ \frac{d}{dx}(x^2 \ln x) = \frac{d}{dx}(x^2) \cdot \ln x + x^2 \cdot \frac{d}{dx}(\ln x) \] Calculating the derivatives: \[ \frac{d}{dx}(x^2) = 2x \quad \text{and} \quad \frac{d}{dx}(\ln x) = \frac{1}{x} \] Thus, we have: \[ \frac{d}{dx}(x^2 \ln x) = 2x \ln x + x^2 \cdot \frac{1}{x} = 2x \ln x + x \] ### Step 5: Set the derivatives equal Now we set the derivatives equal to each other: \[ \frac{1}{y} \frac{dy}{dx} = 2x \ln x + x \] ### Step 6: Solve for \( \frac{dy}{dx} \) To isolate \( \frac{dy}{dx} \), we multiply both sides by \( y \): \[ \frac{dy}{dx} = y(2x \ln x + x) \] ### Step 7: Substitute back for \( y \) Recall that \( y = x^{x^2} \): \[ \frac{dy}{dx} = x^{x^2}(2x \ln x + x) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = x^{x^2} (2x \ln x + x) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y= x^(x^(2x) ) ,then (dy)/(dx) =

x(dy)/(dx)=x+y

If y=(x)^(x) + 10^(x) then (dy)/(dx) =?

if y=x^(x) then (dy)/(dx)

y=x^(x sin x) then (dy)/(dx)

If y=x^(x cos x) , then find (dy)/(dx)

If y=e^(x)+(sin x)^(x) , then (dy)/(dx) = ?

If y=(xcos x-sin x)^(x) ,then (dy)/(dx) =

If y=x^(x) then (dy)/(dx)=?