Home
Class 12
MATHS
If y= x^y , then x(1-y log x) . (dy)...

If ` y= x^y `, then ` x(1-y log x) . (dy)/(dx)=`

A

`x^2 `

B

`y^2 `

C

`xy^2 `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = x^y \), we will differentiate both sides with respect to \( x \) and manipulate the resulting equation to find \( x(1 - y \log x) \frac{dy}{dx} \). ### Step-by-Step Solution: 1. **Take the logarithm of both sides**: \[ \log y = \log(x^y) \] 2. **Apply the logarithmic property**: \[ \log y = y \log x \] 3. **Differentiate both sides with respect to \( x \)**: - For the left-hand side, using implicit differentiation: \[ \frac{1}{y} \frac{dy}{dx} \] - For the right-hand side, using the product rule: \[ \frac{d}{dx}(y \log x) = \frac{dy}{dx} \log x + y \cdot \frac{1}{x} \] 4. **Set the derivatives equal to each other**: \[ \frac{1}{y} \frac{dy}{dx} = \frac{dy}{dx} \log x + \frac{y}{x} \] 5. **Rearrange to isolate \( \frac{dy}{dx} \)**: \[ \frac{1}{y} \frac{dy}{dx} - \frac{dy}{dx} \log x = \frac{y}{x} \] \[ \frac{dy}{dx} \left( \frac{1}{y} - \log x \right) = \frac{y}{x} \] 6. **Factor out \( \frac{dy}{dx} \)**: \[ \frac{dy}{dx} = \frac{y/x}{(1/y) - \log x} \] \[ = \frac{y}{x} \cdot \frac{y}{1 - y \log x} \] 7. **Multiply both sides by \( x(1 - y \log x) \)**: \[ x(1 - y \log x) \frac{dy}{dx} = y \] ### Final Result: Thus, we have: \[ x(1 - y \log x) \frac{dy}{dx} = y \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=log x^(x), then (dy)/(dx)=

If y =log x^(x) ,then (dy)/(dx) =

If y = (sin x)^(log x) " then " (dy)/(dx) = ?

If y=(log x)^(x) then (dy)/(dx) =

If x ln y+y ln x=5 then (dy)/(dx)=