Home
Class 12
MATHS
if x^2 e^y + 2 xye^x + 13 =0 then dy...

if ` x^2 e^y + 2 xye^x + 13 =0` then ` dy //dx` =

A

`-(2 xe^(y-x) + 2y (x +1))/(x (xe^(y-x) +2))`

B

`(2xe^(x-y)+2y (x+1))/( x (xe^(y-x) +2))`

C

`-(2xe^(x-y) + 2y (x+1))/( x(xe^(x-y)+2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) for the equation \( x^2 e^y + 2xy e^x + 13 = 0 \), we will differentiate both sides of the equation with respect to \( x \) using implicit differentiation. ### Step 1: Differentiate the equation Given: \[ x^2 e^y + 2xy e^x + 13 = 0 \] Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(x^2 e^y) + \frac{d}{dx}(2xy e^x) + \frac{d}{dx}(13) = 0 \] ### Step 2: Apply the product rule and chain rule 1. For the first term \( x^2 e^y \): - Using the product rule: \( u = x^2 \) and \( v = e^y \) - \( \frac{d}{dx}(x^2 e^y) = x^2 \frac{d}{dx}(e^y) + e^y \frac{d}{dx}(x^2) \) - \( = x^2 e^y \frac{dy}{dx} + e^y (2x) \) - So, \( \frac{d}{dx}(x^2 e^y) = x^2 e^y \frac{dy}{dx} + 2x e^y \) 2. For the second term \( 2xy e^x \): - Using the product rule: \( u = 2xy \) and \( v = e^x \) - \( \frac{d}{dx}(2xy e^x) = 2xy \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(2xy) \) - \( = 2xy e^x + e^x (2y + 2x \frac{dy}{dx}) \) - So, \( \frac{d}{dx}(2xy e^x) = 2xy e^x + 2y e^x + 2x e^x \frac{dy}{dx} \) 3. The derivative of the constant \( 13 \) is \( 0 \). ### Step 3: Combine the derivatives Putting it all together: \[ x^2 e^y \frac{dy}{dx} + 2x e^y + 2xy e^x + 2y e^x + 2x e^x \frac{dy}{dx} = 0 \] ### Step 4: Collect terms involving \( \frac{dy}{dx} \) Group the terms with \( \frac{dy}{dx} \): \[ \left( x^2 e^y + 2x e^x \right) \frac{dy}{dx} + 2x e^y + 2xy e^x + 2y e^x = 0 \] ### Step 5: Solve for \( \frac{dy}{dx} \) Rearranging gives: \[ \left( x^2 e^y + 2x e^x \right) \frac{dy}{dx} = - (2x e^y + 2xy e^x + 2y e^x) \] \[ \frac{dy}{dx} = - \frac{2x e^y + 2xy e^x + 2y e^x}{x^2 e^y + 2x e^x} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = - \frac{2x e^y + 2xy e^x + 2y e^x}{x^2 e^y + 2x e^x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x^(2)e^(y)+2xye^(x)+13=0 then (dy)/(dx)=

If y=log(e^(x^2)) , then dy/dx=?

If y=e^(x^2+logx) , then dy/dx=?

If y=e^(x)x^(2) then (dy)/(dx)=

If y =e^(xsin 2x +cos 2x ), then (dy)/(dx) =

If x log_(e) (log _(e) x) - x^(2) + y^(2) = 4 (y gt 0) , then (dy)/(dx) at x = e is equal to

If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1 , then y(4) is equal to .

2e^(x+2y) dx -3dy =0

If y=e^(3x+2) ,then (dy)/(dx) is

If x^(2y)=e^(x-y)," then "(dy)/(dx)=