Home
Class 12
MATHS
if y= a^(x^(a^(x. . ."" oo))) , then x...

if ` y= a^(x^(a^(x. . ."" oo)))` , then ` x(1-y log x log y) (dy)/(dx)=`

A

`y^2 log y `

B

` y log y `

C

` y^2 //log y `

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = a^{x^{a^{x^{\cdots}}}} \), we will first express the infinite exponentiation in a manageable form, differentiate, and then manipulate the resulting equation to find the required expression. ### Step-by-Step Solution: 1. **Express the Infinite Exponentiation**: We start with the equation: \[ y = a^{x^{a^{x^{\cdots}}}} \] Since the exponent itself is \( y \), we can rewrite this as: \[ y = a^{x^y} \] 2. **Take the Natural Logarithm**: To simplify the differentiation, we take the logarithm of both sides: \[ \log y = x^y \log a \] 3. **Differentiate Both Sides**: Now we differentiate both sides with respect to \( x \). Using implicit differentiation: - The left-hand side (LHS) requires the chain rule: \[ \frac{d}{dx}(\log y) = \frac{1}{y} \frac{dy}{dx} \] - The right-hand side (RHS) requires the product rule: \[ \frac{d}{dx}(x^y \log a) = \log a \left( y x^{y-1} + x^y \frac{dy}{dx} \log x \right) \] 4. **Set the Derivatives Equal**: Now we can set the derivatives equal to each other: \[ \frac{1}{y} \frac{dy}{dx} = \log a \left( y x^{y-1} + x^y \frac{dy}{dx} \log x \right) \] 5. **Isolate \(\frac{dy}{dx}\)**: Rearranging gives: \[ \frac{1}{y} \frac{dy}{dx} - \log a \cdot x^y \log x \cdot \frac{dy}{dx} = \log a \cdot y x^{y-1} \] Factor out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} \left( \frac{1}{y} - \log a \cdot x^y \log x \right) = \log a \cdot y x^{y-1} \] 6. **Solve for \(\frac{dy}{dx}\)**: Thus, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{\log a \cdot y x^{y-1}}{\frac{1}{y} - \log a \cdot x^y \log x} \] 7. **Multiply by \(x(1 - y \log x \log y)\)**: Now, we need to find \( x(1 - y \log x \log y) \frac{dy}{dx} \): \[ x(1 - y \log x \log y) \frac{dy}{dx} = x(1 - y \log x \log y) \cdot \frac{\log a \cdot y x^{y-1}}{\frac{1}{y} - \log a \cdot x^y \log x} \] ### Final Expression: Thus, the final expression for \( x(1 - y \log x \log y) \frac{dy}{dx} \) is: \[ x(1 - y \log x \log y) \cdot \frac{\log a \cdot y x^{y-1}}{\frac{1}{y} - \log a \cdot x^y \log x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y =log (log x) then (dy)/(dx) =

If y =log x^(x) ,then (dy)/(dx) =

If y= e^(log (log x )) ,then (dy)/(dx) =

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If x ln y+y ln x=5 then (dy)/(dx)=