Home
Class 12
MATHS
if y= x^((log x)^(log (log x)) and if...

if ` y= x^((log x)^(log (log x))` and if ` k=(y log y)/( x log x) ` then `(dy)/(dx) =`

A

`k (2 log log x +1)`

B

`1/k (2 log log x+1)`

C

`2k [ log log x+1]`

D

`(1)/(2k ) ( 2 log log x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( y = x^{(\log x)^{\log(\log x)}} \) and find \( \frac{dy}{dx} \). We will also use the given expression for \( k \). ### Step 1: Take the logarithm of both sides Start by taking the natural logarithm of both sides: \[ \log y = \log\left(x^{(\log x)^{\log(\log x)}}\right) \] ### Step 2: Simplify using properties of logarithms Using the property of logarithms \( \log(a^b) = b \log a \): \[ \log y = (\log x)^{\log(\log x)} \cdot \log x \] This simplifies to: \[ \log y = (\log x)^{\log(\log x) + 1} \] ### Step 3: Differentiate both sides Now, differentiate both sides with respect to \( x \). We will use implicit differentiation and the chain rule: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}\left((\log x)^{\log(\log x) + 1}\right) \] ### Step 4: Differentiate the right side To differentiate the right side, we will apply the product and chain rules. Let \( u = \log x \) and \( v = \log(\log x) + 1 \): \[ \frac{d}{dx}(u^v) = u^v \left( v' \log u + v \frac{u'}{u} \right) \] Where: - \( u' = \frac{1}{x} \) - \( v' = \frac{1}{\log x} \cdot \frac{1}{x} \) Substituting these back, we get: \[ \frac{d}{dx}((\log x)^{\log(\log x) + 1}) = (\log x)^{\log(\log x) + 1} \left( \frac{1}{\log x} \cdot \frac{1}{x} \log(\log x) + \left(\log(\log x) + 1\right) \cdot \frac{1}{x} \right) \] ### Step 5: Combine and simplify Now we can combine our results: \[ \frac{1}{y} \frac{dy}{dx} = \frac{(\log x)^{\log(\log x) + 1}}{x} \left( \frac{\log(\log x)}{\log x} + \log(\log x) + 1 \right) \] ### Step 6: Solve for \( \frac{dy}{dx} \) Multiply both sides by \( y \): \[ \frac{dy}{dx} = y \cdot \frac{(\log x)^{\log(\log x) + 1}}{x} \left( \frac{\log(\log x)}{\log x} + \log(\log x) + 1 \right) \] ### Step 7: Substitute \( y \) back Recall that \( y = x^{(\log x)^{\log(\log x)}} \): \[ \frac{dy}{dx} = x^{(\log x)^{\log(\log x)}} \cdot \frac{(\log x)^{\log(\log x) + 1}}{x} \left( \frac{\log(\log x)}{\log x} + \log(\log x) + 1 \right) \] ### Step 8: Express in terms of \( k \) Given \( k = \frac{y \log y}{x \log x} \), we can express \( \frac{dy}{dx} \) in terms of \( k \): \[ \frac{dy}{dx} = k \cdot \left(2 \log(\log x) + 1\right) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = k \left(2 \log(\log x) + 1\right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=( log x )^(x) -x^(log x) ,then (dy)/(dx)=

If y =log (log x) then (dy)/(dx) =

If y =log x^(x) ,then (dy)/(dx) =

If y=log (log ( log x)) ,then (dy)/(dx)

If y=log x^(x), then (dy)/(dx)=

If log (x+y) =log (xy ) +a, then (dy)/(dx) =