Home
Class 12
MATHS
if y= ( tan^(tan x)x)^(tan x) then ...

if ` y= ( tan^(tan x)x)^(tan x) ` then at ` x=(pi)/( 4) , (dy)/(dx)`=

A

0

B

1

C

2

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( y = (\tan^{\tan x} x)^{\tan x} \) at \( x = \frac{\pi}{4} \). Let's go through the steps systematically. ### Step 1: Rewrite the Function We start with the function: \[ y = (\tan^{\tan x} x)^{\tan x} \] Using the property of exponents \( (a^b)^c = a^{bc} \), we can rewrite \( y \) as: \[ y = \tan^{\tan x \cdot \tan x} x = \tan^{\tan^2 x} x \] ### Step 2: Take the Natural Logarithm To differentiate \( y \), we take the natural logarithm of both sides: \[ \ln y = \tan^2 x \cdot \ln(\tan x) \] ### Step 3: Differentiate Both Sides Now, we differentiate both sides with respect to \( x \): Using the product rule on the right side: \[ \frac{d}{dx}(\ln y) = \frac{1}{y} \frac{dy}{dx} \] For the right side, we apply the product rule: \[ \frac{d}{dx}(\tan^2 x \cdot \ln(\tan x)) = \frac{d}{dx}(\tan^2 x) \cdot \ln(\tan x) + \tan^2 x \cdot \frac{d}{dx}(\ln(\tan x)) \] Calculating each derivative: - The derivative of \( \tan^2 x \) is \( 2\tan x \sec^2 x \). - The derivative of \( \ln(\tan x) \) is \( \frac{1}{\tan x} \cdot \sec^2 x \). Putting it all together: \[ \frac{1}{y} \frac{dy}{dx} = 2\tan x \sec^2 x \ln(\tan x) + \tan^2 x \cdot \frac{\sec^2 x}{\tan x} \] This simplifies to: \[ \frac{1}{y} \frac{dy}{dx} = 2\tan x \sec^2 x \ln(\tan x) + \tan x \sec^2 x \] ### Step 4: Solve for \( \frac{dy}{dx} \) Now, multiply both sides by \( y \): \[ \frac{dy}{dx} = y \left( 2\tan x \sec^2 x \ln(\tan x) + \tan x \sec^2 x \right) \] ### Step 5: Substitute \( x = \frac{\pi}{4} \) Now we need to evaluate \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \): - At \( x = \frac{\pi}{4} \), we have \( \tan\left(\frac{\pi}{4}\right) = 1 \). - Thus, \( y = \tan^{\tan^2\left(\frac{\pi}{4}\right)}\left(\frac{\pi}{4}\right) = 1^{1} = 1 \). Now substituting into our derivative: \[ \frac{dy}{dx} = 1 \left( 2 \cdot 1 \cdot 2 \cdot \ln(1) + 1 \cdot 2 \right) \] Since \( \ln(1) = 0 \): \[ \frac{dy}{dx} = 1 \left( 0 + 2 \right) = 2 \] ### Final Answer Thus, the value of \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \) is: \[ \frac{dy}{dx} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=(tan x)^((tan x)^((tan x)(tan x))-oo), then prove that (dy)/(dx)=2 at x=(pi)/(4), then prove

"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).

If y=e^(tan x)+(log x)^(tan x) then find (dy)/(dx)

If y = (tan x)^(cot x) " then " (dy)/(dx)= ?

If y = sqrt((1 + tan x)/(1 - tan x)) " then " (dy)/(dx)= ?

If y=tan x^(@) & (dy)/(dx) =?

y=sqrt(tan(tan x)) Find dy/dx

If y=x^(tan x)+(tan x)^(x) , then find (dy)/(dx)

y=[(1-tan x)/(1+tan x)], then the value of (dy)/(dx)