Home
Class 12
MATHS
If y=(1 +x)(1 +x^2) (1 +x^4) . . . . ....

If `y=(1 +x)(1 +x^2) (1 +x^4) . . . . . .(1 +x^(2n))` , then at ` x=0 , (dy)/(dx)`=

A

`-1`

B

0

C

1

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = 0\) for the function \[ y = (1 + x)(1 + x^2)(1 + x^4) \cdots (1 + x^{2n}), \] we will follow these steps: ### Step 1: Rewrite the function We can express \(y\) as a product of terms: \[ y = \prod_{k=0}^{n} (1 + x^{2^k}). \] ### Step 2: Differentiate using the product rule To differentiate \(y\), we will use the product rule. The derivative of a product of functions is given by: \[ \frac{dy}{dx} = \sum_{k=0}^{n} \left( \prod_{j \neq k} (1 + x^{2^j}) \cdot \frac{d}{dx}(1 + x^{2^k}) \right). \] The derivative of \(1 + x^{2^k}\) is \(2^k x^{2^k - 1}\). Thus, we have: \[ \frac{dy}{dx} = \sum_{k=0}^{n} \left( \prod_{j \neq k} (1 + x^{2^j}) \cdot 2^k x^{2^k - 1} \right). \] ### Step 3: Evaluate at \(x = 0\) Now, we will evaluate \(\frac{dy}{dx}\) at \(x = 0\): 1. When \(x = 0\), each term \(1 + x^{2^j}\) becomes \(1\). 2. The derivative term \(2^k x^{2^k - 1}\) becomes \(0\) for all \(k\) except when \(k = 0\) (since \(x^{2^k - 1} = 0\) for \(k > 0\)). 3. For \(k = 0\), we have \(2^0 x^{2^0 - 1} = 1\). Thus, at \(x = 0\): \[ \frac{dy}{dx} = \prod_{j \neq 0} (1 + 0^{2^j}) \cdot 1 = 1 \cdot 1 = 1. \] ### Final Result Therefore, the value of \(\frac{dy}{dx}\) at \(x = 0\) is: \[ \frac{dy}{dx} \bigg|_{x=0} = 1. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n))) then (dy)/(dx) at x=0 is

If y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2n)) then find (dy)/(dx) at x=0

If y=(1+x)(1+x^(2))(1+x^(4))(1+x^(8)).......(1+x^(2n)) find dy/dx ?

If y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n))) then y'(0)=1) Statement 2:(d)/(dx)(ln x)=(1)/(x) for x>0

If y=(1+x)(1+x^(2))(1+x^(4))(1+x^(8)).........(1+x^(n)), find dy/dx

If y=1+(x)/(|_(1))+(x^(2))/(|_(2))+......+(x^(n))/(|_(n))+ then the value of (dy)/(dx)-y=

If : y=(1+x^(2))*tan^(-1)x-x," then: "(dy)/(dx)=

If y = (1 + (2)/(x)) (1 + (2)/(x))(1 + (3)/(x))...(1 + (n)/(x)) x ne 0 , "then " (dy)/(dx) when x = - 1 is

If y=(1+x)(1+x^(2))(1+x^(4))(1+x^(8)) then (dy)/(dx) is: