Home
Class 12
MATHS
if x^y . Y^x =1 then (dy)/(dx) =...

if ` x^y . Y^x =1 ` then ` (dy)/(dx)` =

A

`(y(y+x log y))/( x ( y log x +x))`

B

`(y (x +y log x))/( x (y +x log y))`

C

` -(y (y +x log y))/(x( x+y log x))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( x^y \cdot y^x = 1 \) and find \( \frac{dy}{dx} \), we will use logarithmic differentiation. Here’s the step-by-step solution: ### Step 1: Take the logarithm of both sides We start with the equation: \[ x^y \cdot y^x = 1 \] Taking the natural logarithm on both sides gives: \[ \ln(x^y \cdot y^x) = \ln(1) \] ### Step 2: Simplify using logarithmic properties Using the property of logarithms that states \( \ln(a \cdot b) = \ln a + \ln b \), we can rewrite the left side: \[ \ln(x^y) + \ln(y^x) = 0 \] Now, applying the power rule of logarithms \( \ln(a^b) = b \ln a \): \[ y \ln x + x \ln y = 0 \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(y \ln x) + \frac{d}{dx}(x \ln y) = 0 \] Using the product rule for differentiation: \[ \frac{dy}{dx} \ln x + y \cdot \frac{1}{x} + \left( \ln y + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} \right) = 0 \] ### Step 4: Rearranging the equation This simplifies to: \[ \frac{dy}{dx} \ln x + \frac{y}{x} + \ln y + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} = 0 \] Now, we can group the terms involving \( \frac{dy}{dx} \): \[ \left( \ln x + \frac{x}{y} \right) \frac{dy}{dx} + \frac{y}{x} + \ln y = 0 \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now, isolate \( \frac{dy}{dx} \): \[ \left( \ln x + \frac{x}{y} \right) \frac{dy}{dx} = -\left( \frac{y}{x} + \ln y \right) \] Thus, \[ \frac{dy}{dx} = -\frac{\frac{y}{x} + \ln y}{\ln x + \frac{x}{y}} \] ### Final Result The final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{y + x \ln y}{x(\ln x + \frac{x}{y})} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y^x=x^y then (dy)/(dx) at x=1 in

x(dy)/(dx)-y=x+1

If y=|x| then (dy)/(dx) at x=-1 is

If y=1/x then dy/dx is

If sin (x+y) +cos (x+y) =1,then (dy)/(dx)=

If x(x)+y^(y)=1 then find (dy)/(dx) .

y=(1+x)/(1-x) then (dy)/(dx)

If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))