Home
Class 12
MATHS
If y= e^(x+ e^(x +e^(x . . ."" oo) , the...

If `y= e^(x+ e^(x +e^(x . . ."" oo)` , then ` dy // dx =`

A

`(1)/( 1-y)`

B

`(y)/(1-y)`

C

`(2y)/(1-y)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = e^{x + e^{x + e^{x + \ldots}}} \), we will follow these steps: ### Step 1: Define the equation We start with the equation: \[ y = e^{x + y} \] This is because the expression inside the exponent is the same as \( y \) itself. ### Step 2: Take the natural logarithm of both sides Taking the natural logarithm of both sides gives: \[ \ln y = x + y \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\ln y) = \frac{d}{dx}(x + y) \] Using the chain rule on the left side, we have: \[ \frac{1}{y} \frac{dy}{dx} = 1 + \frac{dy}{dx} \] ### Step 4: Rearrange the equation Now, we can rearrange the equation to isolate \( \frac{dy}{dx} \): \[ \frac{1}{y} \frac{dy}{dx} - \frac{dy}{dx} = 1 \] Factoring out \( \frac{dy}{dx} \): \[ \left(\frac{1}{y} - 1\right) \frac{dy}{dx} = 1 \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now, we solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\frac{1}{y} - 1} \] Simplifying the right side: \[ \frac{dy}{dx} = \frac{y}{1 - y} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{y}{1 - y} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y = e^(x) + e^(x + ...oo) " then " (dy)/(dx)= ?

If y=e^(x+e^(x+e^(x+..."to"oo)))," then: "(dy)/(dx)=

If y=e^(x+e^(x+e^(x+..."to"oo)))," then: "(dy)/(dx)=

If y =(e^(x) +e^(-x))/( e^(x) - e^(-x)) ,then (dy)/(dx) =

If y =e^(x+e^(x+e^(x+...infty ))),then (dy)/(dx) =

if y=x^(e^(y+e^(y+e^(y+....... to oo))) , then " (dy)/(dx) is

If y=e^(x).e^(2x).e^(3x)…..e^(nx) , then (dy)/(dx) =

If y =( e^(x) + 1)/( e^(x)) ,then (dy)/(dx) =