Home
Class 12
MATHS
if f(x) = | cos x| then f' ((3pi )/...

if `f(x) = | cos x| ` then ` f' ((3pi )/(4))` is

A

`-(1)/( sqrt(2))`

B

`(1)/( sqrt(2))`

C

1

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f' \left( \frac{3\pi}{4} \right) \) for the function \( f(x) = |\cos x| \), we will follow these steps: ### Step 1: Determine the value of \( \cos \left( \frac{3\pi}{4} \right) \) The angle \( \frac{3\pi}{4} \) is in the second quadrant. In the second quadrant, the cosine function is negative. \[ \cos \left( \frac{3\pi}{4} \right) = -\frac{\sqrt{2}}{2} \] ### Step 2: Rewrite the function \( f(x) \) Since \( \cos \left( \frac{3\pi}{4} \right) \) is negative, we can express \( f(x) \) as follows: \[ f(x) = |\cos x| = -\cos x \quad \text{for } x = \frac{3\pi}{4} \] ### Step 3: Differentiate \( f(x) \) Now we differentiate \( f(x) \). Since \( f(x) = -\cos x \), we can find the derivative: \[ f'(x) = -\frac{d}{dx}(\cos x) = \sin x \] ### Step 4: Evaluate \( f' \left( \frac{3\pi}{4} \right) \) Now we substitute \( x = \frac{3\pi}{4} \) into the derivative: \[ f' \left( \frac{3\pi}{4} \right) = \sin \left( \frac{3\pi}{4} \right) \] The angle \( \frac{3\pi}{4} \) corresponds to \( 135^\circ \), and in the second quadrant, the sine function is positive: \[ \sin \left( \frac{3\pi}{4} \right) = \sin \left( 180^\circ - 45^\circ \right) = \sin 45^\circ = \frac{1}{\sqrt{2}} \] ### Final Answer Thus, the value of \( f' \left( \frac{3\pi}{4} \right) \) is: \[ f' \left( \frac{3\pi}{4} \right) = \frac{1}{\sqrt{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|cos x|, then f' ((3pi)/(4)) is equal to

If f(x)=|cos x| then f'((3 pi)/(4))=

If f(x)=|cos x-sin x|, then f'((pi)/(4))=

If f(x)=|cos x-sin x|* then f((pi)/(4)) is

If f(x)=|cos x|, then f((3 pi)/(4)) is equal to

If f(x)=|cos x-sin x|, then f'((pi)/(2)) is equal to

f(x)=|cos2x|; then f'((pi)/(4)+theta) is equal to

If f(x)=cos x+sin x . find f ((pi)/(2)) .