Home
Class 12
MATHS
If y= |x|^(| sin x|) then the value ...

If `y= |x|^(| sin x|) ` then the value of ` (dy)/(dx) ` at `x=- (pi)/(4)` is equal to

A

`-((pi)/(4))^(1// sqrt(2)) [(1)/(sqrt(2))""log ""(4)/(pi) + (2 sqrt(2))/(pi)]`

B

`((pi)/(4))^(1// sqrt(2)) [(1)/(sqrt(2))""log ""(4)/(pi) + (2 sqrt(2))/(pi)]`

C

`((pi)/(4))^(1// sqrt(2)) [(1)/(sqrt(2))""log ""(pi)/(4) - (2 sqrt(2))/(pi)]`

D

`((pi)/(4))^(1// sqrt(2)) [(1)/(sqrt(2))""log ""(pi)/(4) + (2 sqrt(2))/(pi)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = |x|^{|\sin x|} \) at the point \( x = -\frac{\pi}{4} \), we will follow these steps: ### Step 1: Determine the expression for \( y \) at \( x = -\frac{\pi}{4} \) Since \( x = -\frac{\pi}{4} \) is negative, we have: \[ |x| = -x = \frac{\pi}{4} \] Next, we need to evaluate \( |\sin x| \): \[ \sin\left(-\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} \quad \text{(since sine is negative in the fourth quadrant)} \] Thus, \[ |\sin\left(-\frac{\pi}{4}\right)| = \frac{1}{\sqrt{2}} \] Now substituting these into \( y \): \[ y = \left(\frac{\pi}{4}\right)^{\frac{1}{\sqrt{2}}} \] ### Step 2: Take the natural logarithm of both sides To differentiate \( y \), we will take the natural logarithm: \[ \ln y = \ln\left(|x|^{|\sin x|}\right) = |\sin x| \ln |x| \] Using the properties of logarithms, we can rewrite this as: \[ \ln y = |\sin x| \ln |x| \] ### Step 3: Differentiate both sides with respect to \( x \) Using implicit differentiation: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(|\sin x|) \ln |x| + |\sin x| \frac{d}{dx}(\ln |x|) \] ### Step 4: Differentiate \( |\sin x| \) and \( \ln |x| \) For \( |\sin x| \): \[ \frac{d}{dx}(|\sin x|) = \begin{cases} \cos x & \text{if } \sin x \geq 0 \\ -\cos x & \text{if } \sin x < 0 \end{cases} \] At \( x = -\frac{\pi}{4} \), \( \sin x < 0 \), so: \[ \frac{d}{dx}(|\sin x|) = -\cos\left(-\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} \] For \( \ln |x| \): \[ \frac{d}{dx}(\ln |x|) = \frac{1}{x} \] ### Step 5: Substitute back into the derivative expression Now substituting these derivatives back: \[ \frac{1}{y} \frac{dy}{dx} = \left(-\frac{1}{\sqrt{2}}\right) \ln\left(\frac{\pi}{4}\right) + \frac{1}{-\frac{\pi}{4}} \cdot |\sin\left(-\frac{\pi}{4}\right)| \] Substituting \( |\sin(-\frac{\pi}{4})| = \frac{1}{\sqrt{2}} \): \[ \frac{1}{y} \frac{dy}{dx} = -\frac{1}{\sqrt{2}} \ln\left(\frac{\pi}{4}\right) - \frac{4}{\pi} \cdot \frac{1}{\sqrt{2}} \] ### Step 6: Solve for \( \frac{dy}{dx} \) Now, multiply both sides by \( y \): \[ \frac{dy}{dx} = y \left(-\frac{1}{\sqrt{2}} \ln\left(\frac{\pi}{4}\right) - \frac{4}{\pi \sqrt{2}}\right) \] Substituting \( y = \left(\frac{\pi}{4}\right)^{\frac{1}{\sqrt{2}}} \): \[ \frac{dy}{dx} = \left(\frac{\pi}{4}\right)^{\frac{1}{\sqrt{2}}} \left(-\frac{1}{\sqrt{2}} \ln\left(\frac{\pi}{4}\right) - \frac{4}{\pi \sqrt{2}}\right) \] ### Final Expression Thus, the value of \( \frac{dy}{dx} \) at \( x = -\frac{\pi}{4} \) is: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{2}} \left(\frac{\pi}{4}\right)^{\frac{1}{\sqrt{2}}} \left(\ln\left(\frac{\pi}{4}\right) + \frac{4}{\pi}\right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=e^(sin x) ,the value of (dy)/(dx) at x=(pi)/(2) is

If y=|sin x|^(|x|) then what is the value of (dy)/(dx) at x=-(pi)/(6)?

If y=|tanx-|sinx|| , then the value of (dy)/(dx) at x=(5pi)/(4) is

If y=|sinx|^(|x|) , then what is the value of (dy)/(dx) at x=-(pi)/(6) ?

If y=|sin X^(|x|) then what is the value of (dy)/(dx) at x = (pi)/(6) ?

If y=log sin x+tan x, then Find the value of (dy)/(dx)

If y=lnsqrt(tanx), then what is the value of (dy)/(dx) at x=(pi)/(4)?

If y=tan^(-1)sqrt((1-sin x)/(1+sin x)), then the value of (dy)/(dx) at x=(pi)/(6) is.

If y= tan ^(-1) sqrt (( 1 - sin x)/( 1 + sin x)) , then the vluae of (dy)/(dx) at x = pi /2 is