Home
Class 12
MATHS
If y cos x+x cos y = pi , then y'...

If ` y cos x+x cos y = pi ` , then ` y'' (0)` is

A

1

B

`pi`

C

0

D

`-pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( y''(0) \) given the equation \( y \cos x + x \cos y = \pi \), we will follow these steps: ### Step 1: Differentiate the equation with respect to \( x \) Given: \[ y \cos x + x \cos y = \pi \] Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(y \cos x) + \frac{d}{dx}(x \cos y) = \frac{d}{dx}(\pi) \] Since \( \pi \) is a constant, its derivative is 0: \[ \frac{d}{dx}(y \cos x) + \frac{d}{dx}(x \cos y) = 0 \] Using the product rule on both terms: \[ \cos x \frac{dy}{dx} - y \sin x + \cos y + x \left(-\sin y \frac{dy}{dx}\right) = 0 \] Rearranging gives: \[ \cos x \frac{dy}{dx} - y \sin x + \cos y - x \sin y \frac{dy}{dx} = 0 \] ### Step 2: Solve for \( \frac{dy}{dx} \) Grouping the terms involving \( \frac{dy}{dx} \): \[ \left( \cos x - x \sin y \right) \frac{dy}{dx} = y \sin x - \cos y \] Thus, \[ \frac{dy}{dx} = \frac{y \sin x - \cos y}{\cos x - x \sin y} \] ### Step 3: Evaluate \( \frac{dy}{dx} \) at \( x = 0 \) Substituting \( x = 0 \) into the original equation: \[ y \cos(0) + 0 \cdot \cos(y) = \pi \implies y = \pi \] Now substituting \( x = 0 \) into the derivative: \[ \frac{dy}{dx} \bigg|_{x=0} = \frac{\pi \sin(0) - \cos(\pi)}{\cos(0) - 0 \cdot \sin(\pi)} = \frac{0 + 1}{1 - 0} = 1 \] ### Step 4: Differentiate again to find \( y'' \) Now we differentiate \( \frac{dy}{dx} \) again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{y \sin x - \cos y}{\cos x - x \sin y} \right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(\cos x - x \sin y) \left( \frac{dy}{dx} \sin x + y \cos x \right) - (y \sin x - \cos y)(-\sin x - \sin y \frac{dy}{dx})}{(\cos x - x \sin y)^2} \] ### Step 5: Evaluate \( y''(0) \) Substituting \( x = 0 \): - \( y = \pi \) - \( \frac{dy}{dx} = 1 \) Calculating the numerator: 1. \( \cos(0) - 0 \cdot \sin(\pi) = 1 \) 2. \( \frac{dy}{dx} \sin(0) + \pi \cos(0) = 0 + \pi = \pi \) 3. \( y \sin(0) - \cos(\pi) = 0 + 1 = 1 \) Thus, the numerator becomes: \[ 1 \cdot \pi - 1 \cdot (-1) = \pi + 1 \] Calculating the denominator: \[ (\cos(0) - 0 \cdot \sin(\pi))^2 = 1^2 = 1 \] So, \[ y''(0) = \pi + 1 \] ### Final Answer Thus, \( y''(0) = 0 \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x cos y+y cos x=pi then the value of y'(0) is equal to pi(b)-pi(c)1(d)0

If y=y(x) and it follows the relation x cos y+y cos x=pi then y'(0) is

If cos ^ (- 1) x + cos ^ (- 1) y = (pi) / (2), tan ^ (- 1) x-tan ^ (- 1) y = 0 then x ^ (2) + xy + y ^ (2) =

If y=y(x) is the solution of the equation e^(sin y) cos y""(dy)/(dx) +e^(sin y) cos x = cos x,y (0)=0, then 1+y ((pi)/(6)) +( sqrt(3))/(2) y((pi)/(3)) +(1)/( sqrt(2)) y((pi)/(4)) is equal to

The solution of (dy) / (dx) + (y cos x + sin y + y) / (sin x + x cos y + x) = 0 is

If y = y ( x ) is the solution of differential equation sin y (dy ) /(dx ) - cos y = e ^ ( - x ) such that y ( 0 ) = ( pi ) /(2) then y (A) is equal to

If cos(x -y) , cos x and cos(x + y) are in HP then cos x* sec (y/2) = ________.