Home
Class 12
MATHS
If x^y =y^x , then (dy)/(dx)= (y (xlog...

If ` x^y =y^x ,` then ` (dy)/(dx)= (y (xlog y-y))/(x(y log x-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^y = y^x \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ x^y = y^x \] Taking the natural logarithm of both sides gives us: \[ \log(x^y) = \log(y^x) \] ### Step 2: Apply the power rule of logarithms Using the property of logarithms \( \log(a^b) = b \log(a) \), we can rewrite the equation as: \[ y \log x = x \log y \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \). We will use implicit differentiation: \[ \frac{d}{dx}(y \log x) = \frac{d}{dx}(x \log y) \] Using the product rule on both sides, we have: \[ \frac{dy}{dx} \log x + y \cdot \frac{1}{x} = \log y + x \cdot \frac{dy}{dx} \cdot \frac{1}{y} \] ### Step 4: Rearranging the equation Now we will rearrange the equation to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \log x - x \cdot \frac{dy}{dx} \cdot \frac{1}{y} = \log y - \frac{y}{x} \] Factoring out \( \frac{dy}{dx} \) from the left-hand side gives: \[ \frac{dy}{dx} \left( \log x - \frac{x}{y} \right) = \log y - \frac{y}{x} \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\log y - \frac{y}{x}}{\log x - \frac{x}{y}} \] ### Step 6: Simplifying the expression To express \( \frac{dy}{dx} \) in the required form, we can multiply the numerator and denominator by \( xy \): \[ \frac{dy}{dx} = \frac{y(\log y - \frac{y}{x})}{x(\log x - \frac{x}{y})} \] This simplifies to: \[ \frac{dy}{dx} = \frac{y(x \log y - y)}{x(y \log x - x)} \] Thus, we have shown that: \[ \frac{dy}{dx} = \frac{y(x \log y - y)}{x(y \log x - x)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(y(x ln y-y))/(x(y ln x-x))

If x^(y)=y^(x) then (dy)/(dx)= ... (A) (y(x log y-y))/(x(y log x-x)) (B) (y(y log x-x))/(x(x log y-y)) (C) (y^(2)(1-log x))/(x^(2)(1-log y)) (D) (y(1-log x))/(x(1-log y))

If y =log x^(x) ,then (dy)/(dx) =

If y=log_(y)x, then (dy)/(dx)

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

If y=log x^(x), then (dy)/(dx)=

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))