Home
Class 12
MATHS
y=(tan x ^ tanx)^(tanx), then (dy)/(dx)...

`y=(tan x ^ tanx)^(tanx)`, then `(dy)/(dx)` =1 at `x = pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (\tan x)^{\tan x} \) and check if \( \frac{dy}{dx} = 1 \) at \( x = \frac{\pi}{4} \), we will follow these steps: ### Step 1: Rewrite the function using logarithms We start by taking the natural logarithm of both sides to simplify the differentiation process. \[ \ln y = \ln \left( (\tan x)^{\tan x} \right) \] Using the property of logarithms, we can rewrite this as: \[ \ln y = \tan x \cdot \ln(\tan x) \] ### Step 2: Differentiate both sides Now we differentiate both sides with respect to \( x \). We will use implicit differentiation on the left side and the product rule on the right side. \[ \frac{d}{dx}(\ln y) = \frac{1}{y} \frac{dy}{dx} \] For the right side, we apply the product rule: \[ \frac{d}{dx}(\tan x \cdot \ln(\tan x)) = \frac{d}{dx}(\tan x) \cdot \ln(\tan x) + \tan x \cdot \frac{d}{dx}(\ln(\tan x)) \] Calculating the derivatives: 1. \( \frac{d}{dx}(\tan x) = \sec^2 x \) 2. \( \frac{d}{dx}(\ln(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x = \frac{\sec^2 x}{\tan x} \) So, we have: \[ \frac{dy}{dx} \cdot \frac{1}{y} = \sec^2 x \cdot \ln(\tan x) + \tan x \cdot \frac{\sec^2 x}{\tan x} \] This simplifies to: \[ \frac{dy}{dx} \cdot \frac{1}{y} = \sec^2 x \cdot \ln(\tan x) + \sec^2 x \] ### Step 3: Solve for \( \frac{dy}{dx} \) Now we can isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( \sec^2 x \cdot \ln(\tan x) + \sec^2 x \right) \] Substituting back \( y = (\tan x)^{\tan x} \): \[ \frac{dy}{dx} = (\tan x)^{\tan x} \left( \sec^2 x \cdot \ln(\tan x) + \sec^2 x \right) \] ### Step 4: Evaluate at \( x = \frac{\pi}{4} \) Now we need to evaluate \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \): 1. \( \tan\left(\frac{\pi}{4}\right) = 1 \) 2. \( \sec^2\left(\frac{\pi}{4}\right) = 2 \) 3. \( \ln(\tan\left(\frac{\pi}{4}\right)) = \ln(1) = 0 \) Substituting these values into the derivative: \[ \frac{dy}{dx} = (1)^{1} \left( 2 \cdot 0 + 2 \right) = 1 \cdot 2 = 2 \] ### Conclusion Thus, \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \) is 2, not 1. Therefore, the statement is **false**. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

y=x^(tanx) then (dy)/(dx) is

If y=(tanx)/(tan3x), then

If y=(tanx+cotx)/(tanx-cotx)," then: "(dy)/(dx)=

If y=(sinx +cosx )^((1+tanx )),then (dy)/(dx) =

If y=sqrt((1+tanx)/(1-tanx))," then: "(dy)/(dx)=

If y=logsqrt(tanx)" then "(dy)/(dx)" at " x=(pi)/(4) is

If y=tan^(-1)((6+5 tanx)/(5- 6 tanx)) , then (dy)/(dx)=

e^(tanx)+(logx)^(tanx) find dy/dx