Home
Class 12
MATHS
If x^y +y^x =a^6 , then (dy)/(dx)= . ....

If ` x^y +y^x =a^6 `, then ` (dy)/(dx)`= . . .. . .

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(x^y + y^x = a^6\), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate both sides of the equation We start with the equation: \[ x^y + y^x = a^6 \] Differentiating both sides with respect to \(x\) gives: \[ \frac{d}{dx}(x^y) + \frac{d}{dx}(y^x) = \frac{d}{dx}(a^6) \] Since \(a^6\) is a constant, its derivative is \(0\): \[ \frac{d}{dx}(x^y) + \frac{d}{dx}(y^x) = 0 \] ### Step 2: Differentiate \(x^y\) Using implicit differentiation and the chain rule for \(x^y\): \[ \frac{d}{dx}(x^y) = y \cdot x^{y-1} + x^y \cdot \frac{dy}{dx} \cdot \ln(x) \] So, we have: \[ y \cdot x^{y-1} + x^y \cdot \frac{dy}{dx} \cdot \ln(x) \] ### Step 3: Differentiate \(y^x\) Now, differentiate \(y^x\): \[ \frac{d}{dx}(y^x) = y^x \cdot \ln(y) + x^{y-1} \cdot \frac{dy}{dx} \] Thus, we have: \[ y^x \cdot \ln(y) + x^y \cdot \frac{dy}{dx} \] ### Step 4: Combine the derivatives Now, substituting back into our differentiated equation: \[ y \cdot x^{y-1} + x^y \cdot \frac{dy}{dx} \cdot \ln(x) + y^x \cdot \ln(y) + x^y \cdot \frac{dy}{dx} = 0 \] ### Step 5: Factor out \(\frac{dy}{dx}\) Rearranging gives: \[ x^y \cdot \frac{dy}{dx} \cdot \ln(x) + y^x \cdot \frac{dy}{dx} = -y \cdot x^{y-1} - y^x \cdot \ln(y) \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} (x^y \cdot \ln(x) + y^x) = -y \cdot x^{y-1} - y^x \cdot \ln(y) \] ### Step 6: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-y \cdot x^{y-1} - y^x \cdot \ln(y)}{x^y \cdot \ln(x) + y^x} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{-y \cdot x^{y-1} - y^x \cdot \ln(y)}{x^y \cdot \ln(x) + y^x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

x(dy)/(dx)=y

If x^(y) = y^(x) " then " (dy)/(dx)= ?

if y=x^(x) then (dy)/(dx)

If x^(y) = 2^(x-y) , then (dy)/(dx) =?

If y=x^(x) +a^(a) ,then (dy)/(dx)=

x(dy)/(dx)=x+y

If y^y=x sin y , then (dy)/(dx) =

If y=x^(x) then (dy)/(dx)=?

If x^(y)=y^(x), then find (dy)/(dx)