Home
Class 12
MATHS
If the function f(x) = ( a sin x + 2 cos...

If the function `f(x) = ( a sin x + 2 cos x)/( sin x + cos x )` is increasing for all values of x, then

A

`a gt 1`

B

` a gt 1 `

C

` a lt 2`

D

` a gt 2`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the function \( f(x) = \frac{a \sin x + 2 \cos x}{\sin x + \cos x} \) is increasing for all values of \( x \), we need to analyze its derivative. A function is increasing if its derivative is non-negative for all \( x \). ### Step 1: Differentiate the function We will use the quotient rule for differentiation, which states that if \( f(x) = \frac{u}{v} \), then: \[ f'(x) = \frac{u'v - uv'}{v^2} \] Here, \( u = a \sin x + 2 \cos x \) and \( v = \sin x + \cos x \). ### Step 2: Find \( u' \) and \( v' \) We calculate the derivatives: - \( u' = a \cos x - 2 \sin x \) - \( v' = \cos x - \sin x \) ### Step 3: Apply the quotient rule Now we can apply the quotient rule: \[ f'(x) = \frac{(a \cos x - 2 \sin x)(\sin x + \cos x) - (a \sin x + 2 \cos x)(\cos x - \sin x)}{(\sin x + \cos x)^2} \] ### Step 4: Simplify the numerator We will simplify the numerator step by step: 1. Expand the first term: \[ (a \cos x - 2 \sin x)(\sin x + \cos x) = a \cos x \sin x + a \cos^2 x - 2 \sin^2 x - 2 \sin x \cos x \] 2. Expand the second term: \[ (a \sin x + 2 \cos x)(\cos x - \sin x) = a \sin x \cos x - a \sin^2 x + 2 \cos^2 x - 2 \sin x \cos x \] 3. Combine the two expansions: \[ \text{Numerator} = a \cos x \sin x + a \cos^2 x - 2 \sin^2 x - 2 \sin x \cos x - (a \sin x \cos x - a \sin^2 x + 2 \cos^2 x - 2 \sin x \cos x) \] 4. Combine like terms: \[ = (a \cos^2 x - 2 \sin^2 x + a \sin^2 x + 2 \cos^2 x) + (a \cos x \sin x - a \sin x \cos x) - 2 \sin x \cos x \] \[ = (a + 2 - 2) \cos^2 x + (a - 2) \sin^2 x \] ### Step 5: Set the numerator greater than or equal to zero For \( f'(x) \geq 0 \), we require: \[ (a - 2) \sin^2 x + (a + 2) \cos^2 x \geq 0 \] ### Step 6: Analyze the conditions Since \( \sin^2 x + \cos^2 x = 1 \), we can analyze the coefficients: 1. If \( a - 2 \geq 0 \) (i.e., \( a \geq 2 \)), both terms are non-negative. 2. If \( a + 2 \geq 0 \) (which is always true since \( a \) can be any real number), we focus on the first condition. ### Conclusion Thus, for the function \( f(x) \) to be increasing for all \( x \), we conclude: \[ a \geq 2 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If the function f(x)=(K sin x+2cos x)/(sin x+cos x) is strictly increasing for all values of x, then K 1K 2

The function f(x) = sin x - x cos pi is

The function f(x)=(a sin x+b cos x)/(c sin x+d cos x) is decreasing,if

The function f(x) = sin x + cos x will be

The function f(x) = (lambda sin x + 6 cos x)/(2 sin x + 3 cos x) monotonically increasing if

Find the period of the function f(x) = (sin x + sin 3x)/(cos x + cos 3x)

Integrate the function f(x)=(sin x)/(1+cos^2x)

ML KHANNA-FUNCTIONS-PROBLEM SET (4)
  1. The function f(x) = tan^(-1) (sin x + cos x) is an increasing function...

    Text Solution

    |

  2. If f(x) = int(x^2)^(x^2 +1) e^(-t^2), the interval in which f (x) is i...

    Text Solution

    |

  3. If the function f(x) = ( a sin x + 2 cos x)/( sin x + cos x ) is inc...

    Text Solution

    |

  4. The interval of increase of the function f(x)=x-e^x +tan ((2 pi)/7) is...

    Text Solution

    |

  5. The function f (x)=cot^(-1) x +x increases in the interval

    Text Solution

    |

  6. The function f (x)= x^x decreases on the interval

    Text Solution

    |

  7. The function f(x) = (x)/(log x) increases on the interval

    Text Solution

    |

  8. The function f (x) = ( log x)/( x ) is increasing in the interval

    Text Solution

    |

  9. The function f (x)= ( x)/( 4 +x^2) decreases in the interval

    Text Solution

    |

  10. The function f (x) =tan x-x

    Text Solution

    |

  11. If alpha lt 0, the function (e^( alpha x) +e^(- alpha x )) is a monoto...

    Text Solution

    |

  12. The value of b for which the function f (x)=sin x-bx+c is decreasing i...

    Text Solution

    |

  13. The value of a for which the function f (x) = sin x-Cos x-ax+b decreas...

    Text Solution

    |

  14. y=sin x-a sin2x-1/3 sin 3x + 2ax, then y increases for all values of x...

    Text Solution

    |

  15. The set of values of a 'for which the function f (x) = x^2 + ax +1 is ...

    Text Solution

    |

  16. The length of a longest interval in which the function 3 sin x - 4 sin...

    Text Solution

    |

  17. If f(x) = 2x + cot^(-1) x + log ( sqrt(1+x^2 )-x) then f(x)

    Text Solution

    |

  18. Let h(x) = f (x) -(f (x))^2+ (f (x))^3 for every real number x: Then

    Text Solution

    |

  19. If f(x) = x^(3) + bx^(2) + cx+d and 0 lt b^2 lt c, then in (-oo,...

    Text Solution

    |

  20. The function f (x)=2 log (x - 2) - x^2 + 4x +1 increases on the interv...

    Text Solution

    |