Home
Class 12
MATHS
If alpha lt 0, the function (e^( alpha x...

If `alpha lt 0`, the function `(e^( alpha x) +e^(- alpha x ))` is a monotonic decreasing function for all values of x, where

A

` x gt 0`

B

` x lt 0`

C

` x gt 1`

D

` x lt 1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = e^{\alpha x} + e^{-\alpha x} \) is a monotonic decreasing function for all values of \( x \) when \( \alpha < 0 \), we will follow these steps: ### Step 1: Differentiate the function To analyze the monotonicity of the function, we first need to find its derivative. \[ f'(x) = \frac{d}{dx}(e^{\alpha x} + e^{-\alpha x}) \] Using the chain rule, we differentiate each term: \[ f'(x) = \alpha e^{\alpha x} - \alpha e^{-\alpha x} \] ### Step 2: Factor out common terms We can factor out \( \alpha \) from the derivative: \[ f'(x) = \alpha \left( e^{\alpha x} - e^{-\alpha x} \right) \] ### Step 3: Analyze the sign of the derivative Since \( \alpha < 0 \), we need to analyze the term \( e^{\alpha x} - e^{-\alpha x} \). 1. **For \( x < 0 \)**: - \( e^{\alpha x} \) is a positive number less than 1 (since \( \alpha < 0 \)). - \( e^{-\alpha x} \) is a positive number greater than 1. - Therefore, \( e^{\alpha x} - e^{-\alpha x} < 0 \). So, \( f'(x) < 0 \) when \( x < 0 \). 2. **For \( x = 0 \)**: - \( e^{\alpha \cdot 0} - e^{-\alpha \cdot 0} = 1 - 1 = 0 \). 3. **For \( x > 0 \)**: - \( e^{\alpha x} \) is a positive number less than 1. - \( e^{-\alpha x} \) is a positive number greater than 1. - Therefore, \( e^{\alpha x} - e^{-\alpha x} < 0 \). Thus, \( f'(x) < 0 \) for all \( x \neq 0 \). ### Conclusion Since \( f'(x) < 0 \) for all \( x < 0 \) and \( x > 0 \), the function \( f(x) = e^{\alpha x} + e^{-\alpha x} \) is a monotonic decreasing function for all values of \( x \) when \( \alpha < 0 \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If a<0, the function f(x)=e^(ax)+e^(-ax) is a monotonically decreasing function for values of x given by

Show that f(x)=e^(1/x),quad x!=0 is a decreasing function for all x!=0

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

Show that f(x)=e^((1)/(x)),x!=0 is decreasing function for all x!=0

The function f(x)=x^(2)e^(-x) is monotonic increasing when (a) x in R-[0,2](b)^(@)0

If a lt 0 and f(x)=e^(ax )+ e^(-ax) is monotonically decreasing . Find the interval to which x belongs.

The function f(x)= (x^(2))/(e^(x)) monotonically increasing if

If minimum value of function f(x)=(1+alpha^(2))x^(2)-2 alpha x+1 is g(alpha) then range of g(alpha) is

ML KHANNA-FUNCTIONS-PROBLEM SET (4)
  1. The function f (x)= ( x)/( 4 +x^2) decreases in the interval

    Text Solution

    |

  2. The function f (x) =tan x-x

    Text Solution

    |

  3. If alpha lt 0, the function (e^( alpha x) +e^(- alpha x )) is a monoto...

    Text Solution

    |

  4. The value of b for which the function f (x)=sin x-bx+c is decreasing i...

    Text Solution

    |

  5. The value of a for which the function f (x) = sin x-Cos x-ax+b decreas...

    Text Solution

    |

  6. y=sin x-a sin2x-1/3 sin 3x + 2ax, then y increases for all values of x...

    Text Solution

    |

  7. The set of values of a 'for which the function f (x) = x^2 + ax +1 is ...

    Text Solution

    |

  8. The length of a longest interval in which the function 3 sin x - 4 sin...

    Text Solution

    |

  9. If f(x) = 2x + cot^(-1) x + log ( sqrt(1+x^2 )-x) then f(x)

    Text Solution

    |

  10. Let h(x) = f (x) -(f (x))^2+ (f (x))^3 for every real number x: Then

    Text Solution

    |

  11. If f(x) = x^(3) + bx^(2) + cx+d and 0 lt b^2 lt c, then in (-oo,...

    Text Solution

    |

  12. The function f (x)=2 log (x - 2) - x^2 + 4x +1 increases on the interv...

    Text Solution

    |

  13. On which of the following intervals is the function f(x)=2x^2 - log |...

    Text Solution

    |

  14. y=[ x(x - 3)^2 ] increases for all values of x lying in the ...

    Text Solution

    |

  15. Let f(x)=inte^x (x - 1)(x-2) dx. Then f decreases in the interval

    Text Solution

    |

  16. Let f (x) = x^3 + ax^2 + bx + 5 sin^2 x be an increasing function on t...

    Text Solution

    |

  17. If f(x) =( lamda^2-1)/( lamda^2 +1) x^3 - 3x +5 is a decreasing f...

    Text Solution

    |

  18. Let f (x) = x^3 +6x^2 + px + 2. If the largest possible interval in w...

    Text Solution

    |

  19. If x^(2)/(f(4a))+y^(2)/(f(a^(2)-5)) represents an ellipse with major a...

    Text Solution

    |

  20. The function f (x) = loge (x^3 + sqrt(x^6 +1)) is of the following t...

    Text Solution

    |