Home
Class 12
MATHS
If f(x) = 2x + cot^(-1) x + log ( ...

If ` f(x) = 2x + cot^(-1) x + log ( sqrt(1+x^2 )-x)` then f(x)

A

increases in ` [0,oo)`

B

decreases in `[0,-oo)`

C

neither increases nor decreases in `(0,oo)`

D

increases in `(-oo,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = 2x + \cot^{-1}(x) + \log(\sqrt{1+x^2} - x) \) and determine its behavior (increasing or decreasing) by finding its derivative \( f'(x) \). ### Step 1: Differentiate \( f(x) \) We start by differentiating each term in \( f(x) \): 1. **Differentiate \( 2x \)**: \[ \frac{d}{dx}(2x) = 2 \] 2. **Differentiate \( \cot^{-1}(x) \)**: The derivative of \( \cot^{-1}(x) \) is: \[ \frac{d}{dx}(\cot^{-1}(x)) = -\frac{1}{1+x^2} \] 3. **Differentiate \( \log(\sqrt{1+x^2} - x) \)**: Using the chain rule, we have: \[ \frac{d}{dx}(\log(u)) = \frac{1}{u} \cdot \frac{du}{dx} \] where \( u = \sqrt{1+x^2} - x \). First, we find \( \frac{du}{dx} \): \[ u = \sqrt{1+x^2} - x \] \[ \frac{du}{dx} = \frac{1}{2\sqrt{1+x^2}} \cdot 2x - 1 = \frac{x}{\sqrt{1+x^2}} - 1 \] Now, substituting \( u \) back into the derivative: \[ \frac{d}{dx}(\log(\sqrt{1+x^2} - x)) = \frac{1}{\sqrt{1+x^2} - x} \left(\frac{x}{\sqrt{1+x^2}} - 1\right) \] ### Step 2: Combine the derivatives Now we can combine all the derivatives to find \( f'(x) \): \[ f'(x) = 2 - \frac{1}{1+x^2} + \frac{1}{\sqrt{1+x^2} - x} \left(\frac{x}{\sqrt{1+x^2}} - 1\right) \] ### Step 3: Analyze \( f'(x) \) To determine when \( f'(x) \) is greater than or equal to zero, we need to analyze the expression: \[ f'(x) = 2 - \frac{1}{1+x^2} + \frac{\frac{x}{\sqrt{1+x^2}} - 1}{\sqrt{1+x^2} - x} \] 1. **Behavior of \( 1+x^2 \)**: - \( 1 + x^2 \) is always positive for all real \( x \). - Thus, \( \frac{1}{1+x^2} \) is always positive and less than or equal to 1. 2. **Behavior of \( \sqrt{1+x^2} \)**: - \( \sqrt{1+x^2} \geq 1 \) for all \( x \). ### Step 4: Conclusion about \( f'(x) \) Since \( f'(x) \) consists of a constant (2) minus a positive term \( \frac{1}{1+x^2} \) and additional terms that are also non-negative, we can conclude that: - \( f'(x) \geq 0 \) for all \( x \). ### Final Result Thus, the function \( f(x) \) is increasing for all real numbers \( x \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2 x cot ^(-1)x + log (sqrt(1+x^2)-x then f(x)

f (x) =2x -tan ^(-1) x - ln (x+ sqrt(1+ x ^(2)))

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

Show that f(x)=2x+cot^(-1)x+log(sqrt(1+x^(2))-x) is increasing on R.

Show that f(x)=2x+cot^(-1)x+log(sqrt(1+x^(2))-x) is increasing in R

Let f(x)=log(x+sqrt(x^(2)+1)), then f'(x) equals.

Let f(x) = log (1-x) +sqrt(x^(2)-1). Then dom (f )=?

f(x)=2x-tan^(-1)x-log(x+sqrt(1+x^(2)))(x>0) is increasing in

ML KHANNA-FUNCTIONS-PROBLEM SET (4)
  1. The set of values of a 'for which the function f (x) = x^2 + ax +1 is ...

    Text Solution

    |

  2. The length of a longest interval in which the function 3 sin x - 4 sin...

    Text Solution

    |

  3. If f(x) = 2x + cot^(-1) x + log ( sqrt(1+x^2 )-x) then f(x)

    Text Solution

    |

  4. Let h(x) = f (x) -(f (x))^2+ (f (x))^3 for every real number x: Then

    Text Solution

    |

  5. If f(x) = x^(3) + bx^(2) + cx+d and 0 lt b^2 lt c, then in (-oo,...

    Text Solution

    |

  6. The function f (x)=2 log (x - 2) - x^2 + 4x +1 increases on the interv...

    Text Solution

    |

  7. On which of the following intervals is the function f(x)=2x^2 - log |...

    Text Solution

    |

  8. y=[ x(x - 3)^2 ] increases for all values of x lying in the ...

    Text Solution

    |

  9. Let f(x)=inte^x (x - 1)(x-2) dx. Then f decreases in the interval

    Text Solution

    |

  10. Let f (x) = x^3 + ax^2 + bx + 5 sin^2 x be an increasing function on t...

    Text Solution

    |

  11. If f(x) =( lamda^2-1)/( lamda^2 +1) x^3 - 3x +5 is a decreasing f...

    Text Solution

    |

  12. Let f (x) = x^3 +6x^2 + px + 2. If the largest possible interval in w...

    Text Solution

    |

  13. If x^(2)/(f(4a))+y^(2)/(f(a^(2)-5)) represents an ellipse with major a...

    Text Solution

    |

  14. The function f (x) = loge (x^3 + sqrt(x^6 +1)) is of the following t...

    Text Solution

    |

  15. The function f(x) = cos (pi / x) is decreasing in the interval

    Text Solution

    |

  16. The function f (x) = sin^4 x+cos^4 x increases if

    Text Solution

    |

  17. Let f (x) = {{:( x^(3) - x^(2) + 10 x- 5 , "," , x le 1), ( -2x + log ...

    Text Solution

    |

  18. The set of all x for which log (1 + x) le x is

    Text Solution

    |

  19. For all x in (0,1)

    Text Solution

    |

  20. f(x)=(x)/(sinx ) and g(x)=(x)/(tanx) , where 0 lt x le 1 then in the...

    Text Solution

    |