Home
Class 12
MATHS
The function f (x) = loge (x^3 + sqrt(x...

The function `f (x) = log_e (x^3 + sqrt(x^6 +1))` is of the following types

A

even

B

odd

C

increasing

D

decreasing

Text Solution

AI Generated Solution

The correct Answer is:
To determine the types of the function \( f(x) = \log_e (x^3 + \sqrt{x^6 + 1}) \), we will analyze whether it is even, odd, increasing, or decreasing. ### Step 1: Check if the function is even or odd 1. **Definition**: A function \( f(x) \) is even if \( f(-x) = f(x) \) and odd if \( f(-x) = -f(x) \). 2. **Calculate \( f(-x) \)**: \[ f(-x) = \log_e ((-x)^3 + \sqrt{(-x)^6 + 1}) = \log_e (-x^3 + \sqrt{x^6 + 1}) \] 3. **Simplify**: \[ f(-x) = \log_e (-x^3 + \sqrt{x^6 + 1}) \] 4. **Compare \( f(-x) \) and \( -f(x) \)**: \[ -f(x) = -\log_e (x^3 + \sqrt{x^6 + 1}) = \log_e \left(\frac{1}{x^3 + \sqrt{x^6 + 1}}\right) \] 5. **Check if \( f(-x) = -f(x) \)**: To check if \( f(-x) = -f(x) \), we will rationalize: \[ f(-x) = \log_e \left(-x^3 + \sqrt{x^6 + 1}\right) \] Rationalizing gives: \[ f(-x) = \log_e \left(\frac{(-x^3 + \sqrt{x^6 + 1})(-x^3 + \sqrt{x^6 + 1})}{(-x^3 + \sqrt{x^6 + 1})}\right) \] This simplifies to: \[ f(-x) = -f(x) \] Thus, \( f(x) \) is an odd function. ### Step 2: Determine if the function is increasing or decreasing 1. **Find the derivative \( f'(x) \)**: Using the chain rule and the properties of logarithms: \[ f'(x) = \frac{1}{x^3 + \sqrt{x^6 + 1}} \cdot \left(3x^2 + \frac{1}{2\sqrt{x^6 + 1}} \cdot 6x^5\right) \] 2. **Simplify the derivative**: \[ f'(x) = \frac{3x^2 + \frac{3x^5}{\sqrt{x^6 + 1}}}{x^3 + \sqrt{x^6 + 1}} \] 3. **Analyze the sign of \( f'(x) \)**: - The numerator \( 3x^2 + \frac{3x^5}{\sqrt{x^6 + 1}} \) is always positive for \( x > 0 \). - The denominator \( x^3 + \sqrt{x^6 + 1} \) is also always positive for all \( x \). 4. **Conclusion**: Since \( f'(x) > 0 \) for all \( x \), the function \( f(x) \) is increasing. ### Final Results - The function \( f(x) \) is **odd**. - The function \( f(x) \) is **increasing**.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The function f(x) = sin| log (x + sqrt(x^2 + 1)) | is :

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is

The function f(x)=log(x+sqrt(x^(2)+1)), is

The function f(x)=log(x+sqrt(x^(2)+1)) is

The function f(x)=cos(log(x+sqrt(x^(2)+1))) is :

ML KHANNA-FUNCTIONS-PROBLEM SET (4)
  1. On which of the following intervals is the function f(x)=2x^2 - log |...

    Text Solution

    |

  2. y=[ x(x - 3)^2 ] increases for all values of x lying in the ...

    Text Solution

    |

  3. Let f(x)=inte^x (x - 1)(x-2) dx. Then f decreases in the interval

    Text Solution

    |

  4. Let f (x) = x^3 + ax^2 + bx + 5 sin^2 x be an increasing function on t...

    Text Solution

    |

  5. If f(x) =( lamda^2-1)/( lamda^2 +1) x^3 - 3x +5 is a decreasing f...

    Text Solution

    |

  6. Let f (x) = x^3 +6x^2 + px + 2. If the largest possible interval in w...

    Text Solution

    |

  7. If x^(2)/(f(4a))+y^(2)/(f(a^(2)-5)) represents an ellipse with major a...

    Text Solution

    |

  8. The function f (x) = loge (x^3 + sqrt(x^6 +1)) is of the following t...

    Text Solution

    |

  9. The function f(x) = cos (pi / x) is decreasing in the interval

    Text Solution

    |

  10. The function f (x) = sin^4 x+cos^4 x increases if

    Text Solution

    |

  11. Let f (x) = {{:( x^(3) - x^(2) + 10 x- 5 , "," , x le 1), ( -2x + log ...

    Text Solution

    |

  12. The set of all x for which log (1 + x) le x is

    Text Solution

    |

  13. For all x in (0,1)

    Text Solution

    |

  14. f(x)=(x)/(sinx ) and g(x)=(x)/(tanx) , where 0 lt x le 1 then in the...

    Text Solution

    |

  15. A function is matched below against an interval where it is supposed t...

    Text Solution

    |

  16. The function f(x) = ( log ( pi +x))/( log ( e +x)) is a decreasing fu...

    Text Solution

    |

  17. The function y=(x)/(x^2 - 6x -16 ) is a decreasing function in R-{-2,...

    Text Solution

    |

  18. The function y=sin^(-1) (1+x) increases in -2 lt x lt 0. Is it true?

    Text Solution

    |

  19. The larger of log (1 + x) and ( tan^(-1) x)/(1 +x) when x>0 is .........

    Text Solution

    |

  20. Find the interval of monotonicity of y= (1-x +x^(2))/(1 + x + x^(2))

    Text Solution

    |