Home
Class 12
MATHS
The function f (x) = sin^4 x+cos^4 x in...

The function `f (x) = sin^4 x+cos^4 x` increases if

A

` 0 lt x lt pi //8`

B

` pi //4 lt x lt 3 pi //8`

C

` 3pi // 8 lt x lt 5 pi //8`

D

` 5 pi // 8 lt x lt 3 pi //4`

Text Solution

AI Generated Solution

The correct Answer is:
To determine when the function \( f(x) = \sin^4 x + \cos^4 x \) is increasing, we need to analyze the first derivative of the function, \( f'(x) \). ### Step 1: Differentiate the function We start by differentiating \( f(x) \): \[ f'(x) = \frac{d}{dx}(\sin^4 x) + \frac{d}{dx}(\cos^4 x) \] Using the chain rule: \[ f'(x) = 4\sin^3 x \cdot \cos x - 4\cos^3 x \cdot \sin x \] ### Step 2: Factor out common terms We can factor out common terms from \( f'(x) \): \[ f'(x) = 4\sin x \cos x (\sin^2 x - \cos^2 x) \] Using the double angle identity, \( \sin 2x = 2\sin x \cos x \), we rewrite: \[ f'(x) = 2\sin 2x (\sin^2 x - \cos^2 x) \] ### Step 3: Set the derivative greater than or equal to zero To find when \( f(x) \) is increasing, we need: \[ f'(x) \geq 0 \implies 2\sin 2x (\sin^2 x - \cos^2 x) \geq 0 \] This means we need to analyze the two factors \( \sin 2x \) and \( \sin^2 x - \cos^2 x \). ### Step 4: Analyze \( \sin 2x \) The sine function is non-negative in the intervals: \[ 2x \in [0, \pi] \quad \text{and} \quad 2x \in [2\pi, 3\pi] \quad \text{and so on.} \] This translates to: \[ x \in [0, \frac{\pi}{2}] \quad \text{and} \quad x \in [\pi, \frac{3\pi}{2}] \] ### Step 5: Analyze \( \sin^2 x - \cos^2 x \) The expression \( \sin^2 x - \cos^2 x \) can be rewritten as \( -\cos 2x \). Thus, we need: \[ -\cos 2x \geq 0 \implies \cos 2x \leq 0 \] This occurs in the intervals: \[ 2x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \quad \text{and so on.} \] This translates to: \[ x \in \left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \quad \text{and} \quad x \in \left(\frac{5\pi}{4}, \frac{7\pi}{4}\right) \] ### Step 6: Combine intervals Now we combine the intervals where both conditions hold: 1. From \( \sin 2x \geq 0 \): \( x \in [0, \frac{\pi}{2}] \) or \( x \in [\pi, \frac{3\pi}{2}] \) 2. From \( \sin^2 x - \cos^2 x \geq 0 \): \( x \in \left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \) The intersection gives: \[ x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \] Thus, the function \( f(x) \) is increasing in the interval \( \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \). ### Final Result The function \( f(x) = \sin^4 x + \cos^4 x \) increases in the interval: \[ \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise ASSERTION / REASON|1 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=sin^4x +cos ^4 x increases if

If f(x) =sin^(4)x+cos^(4)x increases, if

The function f(x) = sin x + cos x will be

The function f(x)=sin^(4)x+cos^(4)x increasing if

Show that the function f(x)=sin^(4) x+ cos^(4) x (i) is decreasing in the interval [0,pi/4] . (ii) is increasing in the interval [pi/4,pi/2] .

Find the interval in which the function f(x)=sin(log x)-cos(log x) increase

ML KHANNA-FUNCTIONS-PROBLEM SET (4)
  1. On which of the following intervals is the function f(x)=2x^2 - log |...

    Text Solution

    |

  2. y=[ x(x - 3)^2 ] increases for all values of x lying in the ...

    Text Solution

    |

  3. Let f(x)=inte^x (x - 1)(x-2) dx. Then f decreases in the interval

    Text Solution

    |

  4. Let f (x) = x^3 + ax^2 + bx + 5 sin^2 x be an increasing function on t...

    Text Solution

    |

  5. If f(x) =( lamda^2-1)/( lamda^2 +1) x^3 - 3x +5 is a decreasing f...

    Text Solution

    |

  6. Let f (x) = x^3 +6x^2 + px + 2. If the largest possible interval in w...

    Text Solution

    |

  7. If x^(2)/(f(4a))+y^(2)/(f(a^(2)-5)) represents an ellipse with major a...

    Text Solution

    |

  8. The function f (x) = loge (x^3 + sqrt(x^6 +1)) is of the following t...

    Text Solution

    |

  9. The function f(x) = cos (pi / x) is decreasing in the interval

    Text Solution

    |

  10. The function f (x) = sin^4 x+cos^4 x increases if

    Text Solution

    |

  11. Let f (x) = {{:( x^(3) - x^(2) + 10 x- 5 , "," , x le 1), ( -2x + log ...

    Text Solution

    |

  12. The set of all x for which log (1 + x) le x is

    Text Solution

    |

  13. For all x in (0,1)

    Text Solution

    |

  14. f(x)=(x)/(sinx ) and g(x)=(x)/(tanx) , where 0 lt x le 1 then in the...

    Text Solution

    |

  15. A function is matched below against an interval where it is supposed t...

    Text Solution

    |

  16. The function f(x) = ( log ( pi +x))/( log ( e +x)) is a decreasing fu...

    Text Solution

    |

  17. The function y=(x)/(x^2 - 6x -16 ) is a decreasing function in R-{-2,...

    Text Solution

    |

  18. The function y=sin^(-1) (1+x) increases in -2 lt x lt 0. Is it true?

    Text Solution

    |

  19. The larger of log (1 + x) and ( tan^(-1) x)/(1 +x) when x>0 is .........

    Text Solution

    |

  20. Find the interval of monotonicity of y= (1-x +x^(2))/(1 + x + x^(2))

    Text Solution

    |