Home
Class 9
MATHS
If x=(4+sqrt(15))^(1//3)+(4-sqrt(15))^(1...

If `x=(4+sqrt(15))^(1//3)+(4-sqrt(15))^(1//3)` , then show that `x^(3)-3x-8=0` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( x = (4 + \sqrt{15})^{1/3} + (4 - \sqrt{15})^{1/3} \), then \( x^3 - 3x - 8 = 0 \). ### Step-by-Step Solution: 1. **Let \( a = (4 + \sqrt{15})^{1/3} \) and \( b = (4 - \sqrt{15})^{1/3} \)**: \[ x = a + b \] **Hint**: Define \( a \) and \( b \) for simplicity in calculations. 2. **Cube both sides**: \[ x^3 = (a + b)^3 \] **Hint**: Remember the identity \( (A + B)^3 = A^3 + B^3 + 3AB(A + B) \). 3. **Apply the identity**: \[ x^3 = a^3 + b^3 + 3ab(a + b) \] **Hint**: Substitute \( x \) back into the equation after applying the identity. 4. **Calculate \( a^3 \) and \( b^3 \)**: \[ a^3 = 4 + \sqrt{15}, \quad b^3 = 4 - \sqrt{15} \] \[ a^3 + b^3 = (4 + \sqrt{15}) + (4 - \sqrt{15}) = 8 \] **Hint**: The cube of a cube root returns the original number. 5. **Calculate \( ab \)**: \[ ab = ((4 + \sqrt{15})(4 - \sqrt{15}))^{1/3} = (4^2 - (\sqrt{15})^2)^{1/3} = (16 - 15)^{1/3} = 1^{1/3} = 1 \] **Hint**: Use the difference of squares to simplify the multiplication. 6. **Substitute back into the equation**: \[ x^3 = 8 + 3(1)(x) = 8 + 3x \] **Hint**: Substitute \( ab \) and \( a + b \) into the equation. 7. **Rearrange the equation**: \[ x^3 - 3x - 8 = 0 \] **Hint**: Move all terms to one side to form a standard polynomial equation. ### Final Result: We have shown that \( x^3 - 3x - 8 = 0 \), which is what we needed to prove.
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (short answer type)|10 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (long answer type)|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Comprehension type)|6 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

(4) sqrt(3)x^(2)+2x-sqrt(3)=0

If x=1+sqrt(2) ,then show that : (x-(1)/(x))^(3)=8

lim_(x rarr1)(4-sqrt(15x+1))/(2-sqrt(3x+1))

(sqrt(x)+sqrt(3))^(4)+(sqrt(x)-sqrt(3))^(4)

sqrt(x+3)+sqrt(x+15)<6

If x+sqrt(15)=4, then x+(1)/(x)=2(b)4(c)8 (d) 1

The values of x satisfying the equation (31+8sqrt(15))^(x^(2)-3)+1=(32+8sqrt(15))^(x^(2)-3) is/are (A) 3 (B) 0 (C) 2 (D) -2

For (1)/(asqrt(x)+bsqrt(y)) the rationalising factor is a asqrt(x)-bsqrt(y) . If x=(7sqrt(3))/(sqrt(10)+sqrt(3))-(3sqrt(2))/(sqrt(15)+3sqrt(2))-(2sqrt(5))/(sqrt(6)+sqrt(5)) , then value of x^(4)+x^(2) is