Home
Class 9
MATHS
If sqrt(x)-sqrt(12)=sqrt(4)-sqrt(x) , th...

If `sqrt(x)-sqrt(12)=sqrt(4)-sqrt(x)` , then find `x` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} - \sqrt{12} = \sqrt{4} - \sqrt{x} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \sqrt{x} - \sqrt{12} = \sqrt{4} - \sqrt{x} \] ### Step 2: Move all terms involving \( \sqrt{x} \) to one side Add \( \sqrt{x} \) to both sides: \[ \sqrt{x} + \sqrt{x} - \sqrt{12} = \sqrt{4} \] This simplifies to: \[ 2\sqrt{x} - \sqrt{12} = \sqrt{4} \] ### Step 3: Substitute the values of square roots We know that \( \sqrt{12} = 2\sqrt{3} \) and \( \sqrt{4} = 2 \). Substitute these values into the equation: \[ 2\sqrt{x} - 2\sqrt{3} = 2 \] ### Step 4: Isolate the term with \( \sqrt{x} \) Add \( 2\sqrt{3} \) to both sides: \[ 2\sqrt{x} = 2 + 2\sqrt{3} \] ### Step 5: Divide both sides by 2 \[ \sqrt{x} = 1 + \sqrt{3} \] ### Step 6: Square both sides to solve for \( x \) Now, square both sides to eliminate the square root: \[ x = (1 + \sqrt{3})^2 \] ### Step 7: Expand the squared term Using the formula \( (a + b)^2 = a^2 + 2ab + b^2 \): \[ x = 1^2 + 2 \cdot 1 \cdot \sqrt{3} + (\sqrt{3})^2 \] This simplifies to: \[ x = 1 + 2\sqrt{3} + 3 \] \[ x = 4 + 2\sqrt{3} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{4 + 2\sqrt{3}} \] ---
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (short answer type)|10 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (long answer type)|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Comprehension type)|6 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

If sqrt(8-2sqrt(12))=sqrt(x)-sqrt(y) then find log_x 216 + log_y 128

If x=sqrt(11)-sqrt(10),y=sqrt(12)-sqrt(11), then

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

If sqrt(19-4sqrt(x))=sqrt(12)-sqrt(7), then x=..

(1) sqrt(13-x sqrt(10))=sqrt(8)+sqrt(5) then find the value of x,(2) find sqrt(7+4sqrt(3))

If sqrt(x+1)+sqrt(y)+sqrt(z-4)=(x+y+z)/(2), then find x+y+z

If sqrt(x-2)+sqrt(4-x)=sqrt(6-x) Find x

sqrt(x+4)+sqrt(x+20)=2sqrt(x+11)