Home
Class 9
MATHS
If sqrt(15-xsqrt(14))=sqrt(8)-sqrt(7) , ...

If `sqrt(15-xsqrt(14))=sqrt(8)-sqrt(7)` , then find the value of `x` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{15 - x\sqrt{14}} = \sqrt{8} - \sqrt{7} \), we will follow these steps: ### Step 1: Square both sides To eliminate the square root, we square both sides of the equation: \[ \left(\sqrt{15 - x\sqrt{14}}\right)^2 = \left(\sqrt{8} - \sqrt{7}\right)^2 \] This simplifies to: \[ 15 - x\sqrt{14} = (\sqrt{8})^2 - 2\sqrt{8}\sqrt{7} + (\sqrt{7})^2 \] ### Step 2: Simplify the right side Calculating the squares and the product on the right side: \[ 15 - x\sqrt{14} = 8 - 2\sqrt{56} + 7 \] Combine the constants: \[ 15 - x\sqrt{14} = 15 - 2\sqrt{56} \] ### Step 3: Set the equations equal Now we can set the two sides equal to each other: \[ 15 - x\sqrt{14} = 15 - 2\sqrt{56} \] ### Step 4: Cancel out the constants Subtract 15 from both sides: \[ -x\sqrt{14} = -2\sqrt{56} \] ### Step 5: Remove the negative sign Multiplying both sides by -1 gives: \[ x\sqrt{14} = 2\sqrt{56} \] ### Step 6: Simplify \(\sqrt{56}\) We can simplify \(\sqrt{56}\): \[ \sqrt{56} = \sqrt{4 \times 14} = 2\sqrt{14} \] ### Step 7: Substitute back Now substitute this back into the equation: \[ x\sqrt{14} = 2 \cdot 2\sqrt{14} \] This simplifies to: \[ x\sqrt{14} = 4\sqrt{14} \] ### Step 8: Divide by \(\sqrt{14}\) Now, divide both sides by \(\sqrt{14}\): \[ x = 4 \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (short answer type)|10 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (long answer type)|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Comprehension type)|6 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

If sqrt(13-xsqrt(10))=sqrt(8)+sqrt(5) , then what is the value of x ?

(1) sqrt(13-x sqrt(10))=sqrt(8)+sqrt(5) then find the value of x,(2) find sqrt(7+4sqrt(3))

If x=sqrt(7+sqrt(7));y=sqrt(7-sqrt(7)) then find the value of (x^(6)+y^(6))/(14)

If x=sqrt(7)-sqrt(5),y=sqrt(5)-sqrt(3),z=sqrt(3)-sqrt(7) then find the value of x^(3)+y^(3)+z^(3)-2xyz

If a=sqrt8+sqrt7 , then find the value of a^2-2+1/a^2

If sqrt(17+ xsqrt(11)) = sqrt(11) + sqrt(6) , then value of x^(2) will be:

If a=(sqrt(7)-sqrt(6))/(sqrt(7)+sqrt(6)) and b=(sqrt(7)+sqrt(6))/(sqrt(7)-sqrt(6)), then find the value of a^(2)+b^(2)+ab

If a=(sqrt(7)-sqrt(6))/(sqrt(7)+sqrt(6)) and b=(sqrt(7)+sqrt(6))/(sqrt(7)-sqrt(6)), then find the value of a^(2)+b^(2)+ab

.If sqrt(2401)=sqrt(7^(x)) ,then the value of x