Home
Class 12
MATHS
The scalar product of the vector vec(a) ...

The scalar product of the vector `vec(a) = hat(i) + hat(j) + hat(k)` with a unit vector along the sum of vectors `vec(b) = 2hat(i) + 4hat(j) - 5hat(k)` and `vec(c ) = lambda hat(i) + 2hat(j) + 3hat(k)` is equal to one. Find the value of `lambda` and hence find the unit vector along `vec(b) + vec(c )`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 3|13 Videos
  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 4 (Short Answer Type Questions - II|7 Videos
  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 2 (Short Answer Type Questions - I)|14 Videos
  • THREE DIMENSIONAL GEOMETRY

    OSWAAL PUBLICATION|Exercise Topic - 3 (Long answer type questions - II)|23 Videos

Similar Questions

Explore conceptually related problems

Write a unit vector in the direction of the sum of vectors vec(a) = 2hat(i) - hat(j) + 2hat(k) and vec(b) = -hat(i) + hat(j) + 3hat(k) .

Write a unit vector in the direction of the sum of vectors vec(a) = 2hat(i) + 2hat(j) - 5hat(k) and vec(b) = 2hat(i) + hat(j) - 7hat(k) .

Find the angle between the vectors vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(i) - hat(j) + hat(k) .

Find the unit vector in the direction of vector vec(a)=2hat(i)+3hat(j)+hat(k)

If vec a=6hat(i)+7hat(j)+7hat(k) , find the unit vector along with this vector

If vec(a) = 2hat(i) - hat(j) + 3hat(k) and vec(b) = (6hat(i) + lambda hat(j) + 9 hat(k)) and vec(a) is parallel to vec(b) , find the value of lambda .

If vec(a) = x hat(i) + 2hat(j) - zhat(k) and vec(b) = 3hat(i) - y hat(j) + hat(k) are two equal vectors, then write the value of x+y+z.

Find a unit vector in the direction of vec(A) = 3hat(i) - 2hat(j) + 6hat(k) .

Obtain the projection of the vector vec(a) = 2hat(i) + 3hat(j) + 2hat(k) on the vector vec(b) = hat(i) + 2hat(j) + hat(k) .

let vec a= ( hat i+ hat j+ hat k) then find the unit vector along this vector